#论文题目:【选择偏差】IPS——Recommendations as Treatments: Debiasing Learning and Evaluation(作为治疗的建议:消除学习和评估的偏见)
#论文地址:https://www.cs.cornell.edu/people/tj/publications/schnabel_etal_16b.pdf
#论文源码开源地址:https://www.cs.cornell.edu/~schnabts/mnar/
#论文所属会议:ICML 2016
#论文所属单位:美国纽约州伊萨卡康奈尔大学
一、导读
本文可以说是推荐系统中存在的偏差问题的解决办法的“鼻祖”。提出了逆倾向分数(Inverse Propensity Score, IPS),旨在消除推荐系统中的选择偏差问题。
注意:IPS方法是一个损失函数,用于后期对模型进行修正的方法。
二、方法
2.1 前者的工作不合理
首先,作者提出了理想的评测方法,即在所有的用户-物品对都可以观察到时的标准评测指标:
但是由于真实的
Y
Y
Y是未知的,传统做法中利用观察到的
Y
Y
Y的平均值来估计
R
(
Y
)
)
R(Y))
R(Y)):
接着作者证明了这种方法只有在MCAR (Missing Completely At Random) Pu,i ≡ p 的 uniform 的情况 (且互相独立) 下才是 (1) 的无偏估计:
而通常的 MNAR (Missing Not At Random) 情况, 上述的无偏性就失效了, 即
2.2 IPS方法
作者提出IPS方法来代替公式(5):
其中
P
P
Pu,i表示用户u和物品i的相关性。
2.2.1 P P Pu,i计算方法
一般来说
P
P
Pu,i可以在宏观上表示为:
其中,
X
X
X表示一些可观察到的特征(比如:向用户显示的预测评级),
X
X
Xhid表示观察不到的隐藏特征(比如:该商品是否由朋友推荐),
Y
Y
Y是其评分。
一旦考虑到可观测特征,有理由假设
O
O
Ou,i独立于新的预测
Y
^
\hat{Y}
Y^是合理的(因此也独立于
δ
\delta
δu,i(
Y
Y
Y,
Y
^
\hat{Y}
Y^))
所以,论文提出了两个计算
P
P
Pu,i的方法:
- 基于朴素贝叶斯的倾向估计
此方法需要设置一个小的MCAR数据集进行观测。
- 通过逻辑回归的倾向估计
此倾向估计方法(不需要MCAR数据样本)是基于逻辑回归,通常用于因果推断。
而 Φ \Phi Φ=(W, β \beta β, γ \gamma γ),因此P可以变形为:
在这里,Xu,i是一个向量,它对用户-项目对的所有可观察信息进行编码得到的,另外两个参数是i和u的偏置项。