51Nod1020逆序排序

题目链接
题意:
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。

1-n的全排列中,逆序数最小为0(正序),最大为n*(n-1) / 2(倒序)

给出2个数n和k,求1-n的全排列中,逆序数为k的排列有多少种?
例如:n = 4 k = 3。
1 2 3 4的排列中逆序为3的共有6个,分别是:
1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3
由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。

输入:
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)
输出:
共T行,对应逆序排列的数量 Mod (10^9 + 7)

题解:
我个人感觉是这是一道比较经典的DP题。
定义dp[n][k]为 n 个数的全排列中逆序对为 k 的总数。
首先从一个实例开始,当 n = 4, k = 4 时,按排列的第一个数划分有4中情况:

  • 第一位为1时,对整体排列的逆序对贡献为0,此时有 dp[3][4-0] 种排列
  • 第一位为2时,对整体排列的逆序对贡献为1,此时有 dp[3][4-1] 种排列
  • 第一位为3时,对整体排列的逆序对贡献为2,此时有 dp[3][4-2] 种排列
  • 第一位为4时,对整体排列的逆序对贡献为3,此时有 dp[3][4-3] 种排列
    应此 dp[4][4] = dp[3][4-0] + dp[3][4-1] - dp[3][4-2] + dp[3][4-3] = dp[3][4] + dp[3][3] + dp[3][2] + dp[3][1] 。

根据这种分析思路可的公式:
d p [ n ] [ k ] = ∑ i = 0 n − 1 d p [ n − 1 ] [ k − i ] dp[n][k] = \sum_{i =0}^{n-1}dp[n-1][k-i] dp[n][k]=i=0n1dp[n1][ki]
所以 d p [ n ] [ k − 1 ] = ∑ i = 0 n − 1 d p [ n − 1 ] [ k − i − 1 ] dp[n][k-1] = \sum_{i =0}^{n-1}dp[n-1][k-i-1] dp[n][k1]=i=0n1dp[n1][ki1]
两式相减可得 d p [ n ] [ k ] − d p [ n ] [ k − 1 ] = d p [ n − 1 ] [ k ] − d p [ n − 1 ] [ k − n ] dp[n][k]-dp[n][k-1]=dp[n-1][k]-dp[n-1][k-n] dp[n][k]dp[n][k1]=dp[n1][k]dp[n1][kn]
d p [ n ] [ k ] = d p [ n ] [ k − 1 ] + d p [ n − 1 ] [ k ] − d p [ n − 1 ] [ k − n ] dp[n][k]=dp[n][k-1]+dp[n-1][k]-dp[n-1][k-n] dp[n][k]=dp[n][k1]+dp[n1][k]dp[n1][kn]

#include <bits/stdc++.h>
using namespace std;

#define ll long long 
#define inf 0x3f3f3f3f
#define mes(a, val) memset(a, val, sizeof a)
#define mec(b, a) memcpy(b, a, sizeof a)

const int mod = 1e9 + 7;
int dp[1005][20010];

int MOD(int x)
{
    return ((x % mod) + mod) % mod; 
}
bool judge(int i, int j)
{
    if(j <= (i * (i-1)) / 2) return true;
    return false;
}
int getans(int i, int j){
    if(j < 0) return 0;
    return dp[i][j];
}

void init()
{
    mes(dp, 0);
    for(int i = 0; i <= 1002; i ++){
        dp[i][0] = 1;
    }
    for(int i = 1; i <= 1002; i ++){
        for(int j = 1; j <= 20005; j ++){
	    if(judge(i, j)){
	        dp[i][j] = dp[i][j-1] + dp[i-1][j];
		dp[i][j] = MOD(dp[i][j]);
		dp[i][j] -= getans(i-1, j-i);
		dp[i][j] = MOD(dp[i][j]);
	    }
	}
    }
}

void Print()
{
    
    for(int i = 0; i < 10; i ++){
        printf("i = %d: ", i);
        for(int j = 0; j < 10; j ++){
	    printf("%5d", dp[i][j]);
	}
	printf("\n");
    }
}


int main()
{
    /*int n; scanf("%d", &n);
    for(int i = 0; i < n; i ++){
        scanf("%d", &a[i]);
    }*/
    init();
    int T; scanf("%d", &T);
    while(T --){
        int n, k; scanf("%d %d", &n, &k);    
        if(judge(n, k)) printf("%d\n", dp[n][k]);
	else printf("0\n");
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值