51Nod 1020 逆序排列(前缀和优化dp)

题意:

在这里插入图片描述
在这里插入图片描述

解法:
令d[i][j]表示前i个数,逆序对数量为j的方案数.

考虑[1,i]枚举第一个数k,那么后面一定有i-k个比k大的数,
之后的n-1个数等价于求前n-1个数,逆序对j-(i-k)个的方案数,
因此转移方程为d[i][j]+=d[i-1][j-(i-k)].
发现d[i-1][j-(i-k)]的第二维是连续的一段,用前缀和优化一下就行了.
code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=1e3+5;
const int mod=1e9+7;
int d[1000+5][20000+5];
int sum[20000+5];
int n,k;
void init(){
    d[1][0]=sum[0]=1;
    for(int j=0;j<=2e4;j++){
        sum[j]=(sum[j-1]+d[1][j])%mod;
    }
    //
    for(int i=2;i<=1e3;i++){
        for(int j=1;j<=2e4;j++){
            int l=j-(i-1);
            int r=j-(i-i);
            l=max(l,0);
            d[i][j]=(sum[r]-(l==0?0:sum[l-1]))%mod;
        }
        d[i][0]=sum[0]=1;
        for(int j=1;j<=2e4;j++){
            sum[j]=(sum[j-1]+d[i][j])%mod;
        }
    }
}
void solve(){
    scanf("%d%d",&n,&k);
    int ans=(d[n][k]+mod)%mod;
    printf("%d\n",ans);
}
signed main(){
    init();
    int T;scanf("%d",&T);while(T--)
    solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值