文献阅读(17)KDD2016-Structural Deep Network Embedding

本文是对《Structural Deep Network Embedding》一文的浅显翻译与理解,如有侵权即刻删除。

朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~

Chinese-Reading-Notes-of-Graph-Learning

更多相关文章,请移步:文献阅读总结:网络表示学习/图学习

Title

《Structural Deep Network Embedding》

——KDD2016

Author: DaiXin Wang

总结

文章提出了SDNE(Structural Deep Network Embedding)算法,该算法使用半监督学习,一方面用监督学习从邻接矩阵中得到表示一阶相似度的局部结构,一方面用无监督学习得到表示二阶相似度的全局结构,首次将深度学习模型引入到网络表示学习中。

1 定义

对图G=(V,E),每条边e存在权重s_ij>=0,当节点i和j之间无连接时,s为0,其余情况都大于0,具体值视有向图和无向图变化。

对一阶相似度,若两节点之间存在边,即s>0,则视为节点间存在一阶相似度。
对二阶相似度,给出节点u的邻居序列Nu={s_u1,…,s_u|V|},则节点u与v各自邻居序列的相似程度即为二阶相似度。
则目标函数即使得嵌入yi和yj之间的相似性,能够清晰表达节点i和j之间的一阶和二阶相似度。

文章提出了半监督的深度模型,为捕捉高阶非线性网络结构,用多层非线性映射函数构成模型,框架如图所示:
在这里插入图片描述
对每个节点,模型的有监督部分学习节点一阶相似度,无监督部分学习节点的二阶相似度。
下表为所需符号的定义:
在这里插入图片描述

2 二阶相似度

对二阶相似度,给出邻接矩阵S,可引入传统的深度自编码器来保持二阶相似度。
深度自编码器分为两部分,编码器和解码器。编码器由多层非线性函数组成,将输入数据映射到表征空间中;解码器同样由多层非线性函数组成,将表征从表征空间映射到重构空间中。给出输入Xi,每一层的隐藏表征为:
在这里插入图片描述
得到yi(k)后,就可以通过逆转编码器的计算过程,从而得到输出^Xi,自编码器的目的就在于最小化输入和输出之间的重构误差,损失函数如下:
在这里插入图片描述
如果直接将输入x等同于邻接矩阵S,虽然拥有相似邻居结构的节点能够有相似的节点表征,但事实上邻接矩阵中的边,是可以被观察到的一部分,在网络结构中,还有很多边没有被观察到。这就导致邻接矩阵中非0值要比0少得多,过于稀疏,如果直接作为输入,更容易将S中的0值重构。
为解决此问题,算法为非0值加入了更多的罚项,则损失函数变化如下:
在这里插入图片描述
中间的运算操作即哈达玛积,对bi,当s_ij=0,b_ij=1,否则b_ij=β>1。

3 一阶相似度

一阶相似度的损失函数借鉴了拉普拉斯特征映射,当相似节点映射较远时会得到罚项,从而能够保持一节相似度,函数如下:
在这里插入图片描述
对一阶和二阶相似度的损失函数进行共同最小化,即:
在这里插入图片描述
其中Lreg为防止过拟合的正则化L2范数,定义如下:
在这里插入图片描述

4 优化

对上述损失函数进行优化,即求Lmix关于两个W矩阵的偏导数,即:
在这里插入图片描述
以下为具体拆分推导:
在这里插入图片描述
至此,关于L2nd的偏导数部分,就已经得到,接下来进行L1st的偏导数部分推导,首先有:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对Lreg的偏导数通过上文公式易得,至此,就得到了参数的偏导数部分。给出一个初始化的参数,可以使用随机梯度下降进行优化,但由于模型的高阶非线性,可能会得到局部最优。因此,算法引入了深度置信网络对参数进行预训练,可以视为基本参数初始化。
算法全过程如下:
在这里插入图片描述
输入为图G=(V,E),邻接矩阵S,参数a和v;输出为网络表征Y和更新后的参数θ。
首先在深度置信网络中进行预训练得到初始化参数,令X=S,重复以下步骤直到收敛:根据式(1)得到X和Y=Yk,得到损失函数Lmix,根据式(6)进行反向传播,得到更新后的参数θ。
至此,就得到了网络表征Y。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值