代码随想录 | Day21

本文介绍了在二叉搜索树中解决三个算法题:1.找到任意两节点间的最小绝对差;2.寻找众数,要求在含重复值的BST中找到出现频率最高的元素;3.计算两个指定节点的最近公共祖先。作者提到二叉搜索树特性在这些问题中的应用以及一些解题思路和代码实现。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


今日学习目标

二叉搜索树的最小绝对差(530)
二叉搜索树中的众数(501)
二叉树的最近公共祖先(236)

一、算法题

1.二叉搜索树的最小绝对差

题目:
给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。

差值是一个正数,其数值等于两值之差的绝对值。

示例 1:
在这里插入图片描述

输入:root = [4,2,6,1,3]
输出:1
思路:
提到二叉搜索树,根据其特点想到中序遍历,这样可以得到一个有序数组,就能解开这道题目。

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if(root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val);
        traversal(root->right);
    }
    int getMinimumDifference(TreeNode* root) {
        int minValue = INT_MAX;
        traversal(root);
        if (vec.size() < 2) return 0;
        for(int i = 1; i < vec.size(); i++) {
            if(abs(vec[i] - vec[i-1]) < minValue) {
                minValue = vec[i] - vec[i-1];
            }
        }
        return minValue;
    }
};

2.二叉搜索树中的众数

题目:
给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。

如果树中有不止一个众数,可以按 任意顺序 返回。

假定 BST 满足如下定义:

结点左子树中所含节点的值 小于等于 当前节点的值
结点右子树中所含节点的值 大于等于 当前节点的值
左子树和右子树都是二叉搜索树

示例 1:
在这里插入图片描述

输入:root = [1,null,2,2]
输出:[2]
思路:
双指针的方法还不是很理解

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
private:
    int maxCount = 0;
    int count = 0;
    TreeNode* pre = NULL;
    vector<int> result;
    void searchBST(TreeNode* cur) {
        if(cur == NULL) return;

        searchBST(cur->left);
        if(pre == NULL) {
            count = 1;
        } else if (pre->val == cur->val) {
            count++;
        } else {
            count = 1;
        }
        pre = cur;

        if(count == maxCount) {
            result.push_back(cur->val);
        }

        if(count > maxCount) {
            maxCount = count;
            result.clear();
            result.push_back(cur->val);
        }

        searchBST(cur->right);
        return;
    }
public:
    vector<int> findMode(TreeNode* root) {
        count = 0;
        maxCount = 0;
        pre = NULL;
        result.clear();

        searchBST(root);
        return result;
    }
};

3.二叉树的最近公共祖先

题目:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例 1:
在这里插入图片描述

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。
思路:
carl哥总结的很好,我便直接搬运过来,在此特地说明

1.求最小公共祖先,需要从底向上遍历,那么二叉树,只能通过后序遍历(即:回溯)实现从底向上的遍历方式。

2.在回溯的过程中,必然要遍历整棵二叉树,即使已经找到结果了,依然要把其他节点遍历完,因为要使用递归函数的返回值(也就是代码中的left和right)做逻辑判断。

3.要理解如果返回值left为空,right不为空为什么要返回right,为什么可以用返回right传给上一层结果。

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root == q || root == p || root == NULL) return root;
        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);
        if(left != NULL && right != NULL) return root;
        if(left == NULL && right != NULL) return right;
        else if (left != NULL && right == NULL) return left;
        else {
            return NULL;
        }
    }
};

今日心得

二叉搜索树中的众数和二叉树的最近公共祖先的解法不太容易理解,需要多看几遍+复习。

学习及参考书籍

代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值