Covered Path

Problem:Covered Path

Description:
The on-board computer on Polycarp’s car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2 meters per second. We know that this section of the route took exactly t seconds to pass.
Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.

Input:
The first line contains two integers v1 and v2 (1 ≤ v1, v2 ≤ 100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.
The second line contains two integers t (2 ≤ t ≤ 100) — the time when the car moves along the segment in seconds, d (0 ≤ d ≤ 10) — the maximum value of the speed change between adjacent seconds.
It is guaranteed that there is a way to complete the segment so that:

the speed in the first second equals v1,
the speed in the last second equals v2,
the absolute value of difference of speeds between any two adjacent seconds doesn’t exceed d.

Output:
Print the maximum possible length of the path segment in meters.

Sample Input 1:
5 6
4 2

Sample Output 1:
26

Sample Input 2:
10 10
10 0

Sample Output 2:
100

Note:
In the first sample the sequence of speeds of Polycarpus’ car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters.
In the second sample, as d = 0, the car covers the whole segment at constant speed v = 10. In t = 10 seconds it covers the distance of 100 meters.

Language:C

#include <stdio.h>

int main()
{
  int v1,v2;
  scanf("%d%d",&v1,&v2);
  int t,d;
  scanf("%d%d",&t,&d);

  int ans=0;
  while(t--)
  {
    if(v1<=v2)
    {
      ans+=v1;
      v1+=d;
    }
    else
    {
      ans+=v2;
      v2+=d;
    }
  }
  printf("%d",ans);

  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值