LeetCode-数组-重叠、合并、覆盖问题-中等难度

435. 无重叠区间

在这里插入图片描述
我认为区间类的题型,大多数考验的是思维能力,以及编码能力,该类题型本身并无什么算法可言,主要是思维逻辑,比如本题实际上你只需要能够总结出重叠与不重叠的含义,再加上一点编码技巧,便可完成。

解题思路

正如前面所说,那么解题的关键思路就在于找到重叠区间的特性即可,我们不妨先按照start进行一次排序,再进行观察,比如数组:[[1,2],[2,3],[3,4],[1,3]],排序后为:[[1,2],[1,3],[2,3],[3,4]],通过观察我们很容易发现,如果前一个数组的end大于下一个数组的start,则这两个数组一定发生了重叠,这个比较容易理解,如图所示:分别有两个数组[1,2][1,3]
在这里插入图片描述
重叠部分一眼可见,但关键在于产生重叠后,应该留下谁?舍弃谁?我们不妨还是画图理解,按照题目示例,接下来一组数字是[2,3]
在这里插入图片描述
我们可以分开讨论,假设我们选择保留[1,3],那么很明显下一组[2,3]将变为重叠部分。
在这里插入图片描述
而如果我们选择保留[1,2],则不会再产生重叠部分。
在这里插入图片描述

根据题目要求,需要我们通过移除最少的区间数量来实现区间互不重叠,因此应当使用第二种方案,从原理上来说,就是当两个区间产生重叠后,我们应当保留区间范围更小的一组,因为这样更有可能避免与后面的区间再产生重叠(很容易理解的一点概念:区间范围越大,越容易发生重叠

结论,假设有[[s1, e1], [s2, e2], [s3, e3] ... [sn, en]],如果e1 > s2,则将触发[s1 ,e1],[s2, e2]合并,合并规则为:如果e1 > e2,合并为[s1, e2],否则合并为[s1, e1],如果e1 <= s2,则无需合并,直接检查下一个区间即可。

代码实现

public int eraseOverlapIntervals(int[][] intervals) {
  // 不要忘了,先按start进行排序
  Arrays.sort(intervals, (o1, o2) -> o1[0] - o2[0]);
  int ans = 0;
  int end = intervals[0][1];
  for(int i = 1; i < intervals.length; i++){
    int start = intervals[i][0];
    if(end > start){
      end = Math.min(end, intervals[i][1]);
      ans++;
    }else{
      end = intervals[i][1];
    }
  }
  return ans;
} 

56. 合并区间

在这里插入图片描述

解题思路

本题与上一题比较相似,都是处理重叠区间的问题,我们同样可以画图理解,以题目示例1为例:[[1,3],[2,6],[8,10],[15,18]]

在这里插入图片描述
首先与前一题一样,如果前一个数组的end大于下一个数组的start,则表示一定出现了重叠,而关于end部分的去留,则正好与前一题相反,前一题保留的是较小部分,本题则需要保留较大部分。

结论,假设有[[s1, e1], [s2, e2], [s3, e3] ... [sn, en]],如果e1 >= s2,则将触发[s1 ,e1],[s2, e2]合并,合并规则为:如果e1 > e2,合并为[s1, e1],否则合并为[s1, e2],如果e1 < s2,则无需合并,直接检查下一个区间即可。

代码实现

由于本题需要在原数组上进行修改,因此先借用一个list辅助记录,实际处理逻辑并没区别。

class Solution {
    public int[][] merge(int[][] intervals) {
        Arrays.sort(intervals, (o1, o2) -> o1[0] - o2[0]);
        List<int[]> list = new ArrayList<>();
        list.add(new int[]{intervals[0][0], intervals[0][1]});
        for(int i = 1; i < intervals.length; i++){
            int start = intervals[i][0];
            int end = intervals[i][1];
            if(list.get(list.size()-1)[1] < start){
                list.add(new int[]{start, end});
            }else{
                list.get(list.size()-1)[1] = Math.max(end, list.get(list.size()-1)[1]);
            }
        }
        return list.toArray(new int[list.size()][]);
    }
}

1288. 删除被覆盖区间

在这里插入图片描述

解题思路

前面两题处理的都是数据范围重叠的问题,本题要解决的则是数据范围覆盖问题,我们先要搞清楚符合覆盖的条件有哪些?很明显,当s1 <= s2 且 e2 <= e1时,则认为[s2, e2]区间被[s1, e1]区间覆盖。

如下图所示:
在这里插入图片描述

结论,假设有[[s1, e1], [s2, e2], [s3, e3] ... [sn, en]],当s1 <= s2 且 e2 <= e1时,则可删除区间[s2, e2],这里需要注意的是,为了方便处理,我们可以让start按照升序排序的同时,并让end按照降序排序,这样代码实现时只要满足e1 >= e2即可认为被覆盖了。实际上就是为了方便进行判断s1 <= s2 且 e2 <= e1

代码实现

class Solution {
    public int removeCoveredIntervals(int[][] intervals) {
        Arrays.sort(intervals, (o1, o2) -> o1[0] == o2[0] ? o2[1] - o1[1] : o1[0] - o2[0]);
        int cnt = 0;
        int preEnd = intervals[0][1];
        for (int i = 1; i < intervals.length; i++) {
            int curEnd = intervals[i][1];
            if (preEnd >= curEnd) {
                cnt++;
            } else {
                preEnd = curEnd;
            }
        }
        return intervals.length - cnt;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码拉松

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值