深度学习-----------------多个输入和输出通道

多个输入通道

彩色图像可能有RGB三个通道
转换为灰度会丢失信息。

在这里插入图片描述
在这里插入图片描述


每个通道都有一个卷积核,结果是所有通道卷积结果的和

在这里插入图片描述

输入有2个通道(通道0、通道1),对每一个通道都有一个卷积核。




在这里插入图片描述
c i c_i ci是通道,输入是三维的。核也是三维。




多个输出通道

无论有多少输入通道,到目前为止我们只用到单输出通道。

我们可以有多个三维卷积核,每个核生成一个输出通道

在这里插入图片描述
c o c_o co其实就是 c o u t p u t c_{output} coutput c i c_i ci个通道,每个通道 c o c_o co种卷积核,共有 c i c_i ci* c o c_o co种卷积核。

c i c_i ci:输入通道的(卷积核)层数
c o c_o co:输出通道(卷积核)层数

为了提出不同的特征,两者无相关性。




多个输入和输出通道

每个输出通道可以识别特定模式

在这里插入图片描述

输入通道核识别并组合输入中的模式。




1×1卷积层

k h k_h kh= k w k_w kw=1是一个受欢迎的选择。它不识别空间模式,只是融合通道

在这里插入图片描述

通道0和通道1的卷积核
在这里插入图片描述

把output对应输入里面的像素,每个不同的通道做加权和。

在这里插入图片描述

在这里插入图片描述
相当于输入形状为 n h n_ h nh n w n_ w nw× c i c_ i ci(把输入拉成一个 n h n_ h nh n w n_ w nw向量,列数是 c i c_ i ci,整体是一个矩阵),权重为 c i c_ i ci× c o c_ o co的全连接层。




二维卷积层

在这里插入图片描述
一共有 c o c_ o co× c i c_ i ci个卷积核,每个卷积核都有一个偏差。

计算复杂度:
    这么理解:最后输出 m h m_ h mh× m w m_ w mw个点 c o c_ o co个通道,这意味着总共有 c o c_ o co× m h m_ h mh× m w m_ w mw个输出点,对于每个输出点,它都涉及到与卷积核的乘法操作。卷积核的大小为 k h k_h kh× k w k_w kw且输入特征图 c i c_ i ci个通道,那么对于输出特征图上的每一个点,都需要进行 c i c_ i ci× k h k_h kh× k w k_w kw次乘法操作。(因为每个输出点都是输入特征图上对应区域的 c i c_i ci个通道与卷积核的乘积之和)。




总结

    ①输入通道数是卷积层的超参数。
    ②每个输入通道都有独立的二维卷积核,所有通道结果相加得到一个输出通道结果。
    ③每个输出通道有独立的三维卷积核。




多输入多输出通道代码实现

多输入单输出通道代码实现

实现一下多输入通道互相关运算

import torch
from d2l import torch as d2l


def corr2d_multi_in(X, K):
    # for使得对最外面通道进行遍历,先遍历“X”和“K”的第0个维度(通道维度)
    # 使用sum 函数来遍历 X 和 K 的通道,并对每个通道对应用 d2l.corr2d 函数进行二维卷积操作,然后将所有通道的结果相加。
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

验证互相关运算的输出

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                  [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])

print(corr2d_multi_in(X, K))

输出:

在这里插入图片描述




多输出通道代码实现

计算多个通道的输出的互相关函数

def corr2d_multi_in_out(X, K):
    # 迭代“K”的第0个维度(输出通道),每次都对输入“X”执行互相关运算。
    # 最后将所有结果都叠加在一起
    # torch.stack([...], 0) 将上一步生成的列表中的张量沿着一个新的维度(这里是第0维,即批量大小维度)堆叠起来 
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

通过将核张量K与K+1(K中每个元素加1)和K+2连接起来,构造了一个具有3个输出通道的卷积核。

# 要堆叠的张量K、K+1、K+2
# K原来是3D,然后通过stack堆叠成为4D
K = torch.stack((K, K + 1, K + 2), 0)
print(K.shape)

输出:输出是3,输入是2,高和宽分别是2(3个卷积核,每个卷积核有两个通道,每个通道是2×2的矩阵)
在这里插入图片描述




①为什么原先K形状是torch.Size([2, 2, 2]),后来变成了torch.Size([3, 2, 2, 2])?
三个堆起来就是最外层3.



②输入为什么是2?
因为X的通道是2

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                  [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])

显示:

在这里插入图片描述



③原先的K、K+1、K+2(左),后来堆叠的(右)

在这里插入图片描述在这里插入图片描述


该部分代码

import torch

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                  [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
print(X.shape)
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
print(K.shape) # torch.Size([2, 2, 2]) 两块2行2列
print(K)
print(K+1)
print(K+2)
K = torch.stack((K, K + 1, K + 2), 0)
print(K)
print(K.shape)



输入张量X卷积核张量K执行互相关运算。现在的输出包含3个通道,第一个通道的结果与先前输入张量X和多输入单输出通道的结果一致。

corr2d_multi_in_out(X, K)

多输入多输出通道总代码

import torch
from d2l import torch as d2l


def corr2d_multi_in(X, K):
    # for使得对最外面通道进行遍历,先遍历“X”和“K”的第0个维度(通道维度)
    # 使用sum 函数来遍历 X 和 K 的通道,并对每个通道对应用 d2l.corr2d 函数进行二维卷积操作,然后将所有通道的结果相加。
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))


def corr2d_multi_in_out(X, K):
    # 迭代“K”的第0个维度(输出通道),每次都对输入“X”执行互相关运算。
    # 最后将所有结果都叠加在一起
    # torch.stack([...], 0) 将上一步生成的列表中的张量沿着一个新的维度(这里是第0维,即批量大小维度)堆叠起来
    return torch.stack([corr2d_multi_in(X,k) for k in K],0) # 大k中每个小k是一个3D的Tensor。0表示stack堆叠函数里面在0这个维度堆叠。


X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
                  [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])

K = torch.stack((K, K + 1, K + 2), 0)
print(corr2d_multi_in_out(X, K))

输出:
在这里插入图片描述




多个输入和输出通道用途

    ①每个输出通道可以识别特定模式
    ②输入通道核识别并组合输入中的模式




1×1卷积

k h k_h kh= k w k_w kw=1。它不识别空间模式,只是融合通道。相当于输入形状为 n h n_h nh n w n_w nw× c i c_i ci,权重为 c o c_o co× c i c_i ci的全连接层。

在这里插入图片描述

下面,我们使用全连接层实现 1×1 卷积。 请注意,我们需要对输入输出的数据形状进行调整

def corr2d_multi_in_out_1x1(X, K):
	# 获取输入X的形状,其中c_i是输入通道数,h是高度,w是宽度  
    c_i, h, w = X.shape
    # 获取卷积核K的形状,其中c_o是输出通道数
    c_o = K.shape[0]
    # 将二维的图像数据(高度和宽度)平铺成一维  
    X = X.reshape((c_i, h * w))
    # # 将卷积核K的形状保持不变,因为对于1x1卷积,卷积核的形状已经是(c_o, c_i)
    K = K.reshape((c_o, c_i))
    # 全连接层中的矩阵乘法
    Y = torch.matmul(K, X)
    # 将矩阵乘法的结果Y的形状从(c_o, h*w)重塑为(c_o, h, w)  
    # 即将一维的输出数据恢复成二维的图像数据(高度和宽度),同时保持输出通道数c_o  
    return Y.reshape((c_o, h, w))

当执行 1×1 卷积运算时,上述函数相当于先前实现的互相关函数corr2d_multi_in_out。让我们用一些样本数据来验证这一点。

# (3, 3, 3)第一个3是3个通道数,后面两个3是高和宽
X = torch.normal(0, 1, (3, 3, 3))
# (2, 3, 1, 1)第一个参数2是输出,第二个参数是输入通道3,后面两个参数是高和宽,kernel数是1×1
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
# 意味着1×1的卷积层相当于输入形状为c_i × n_hn_w,权重为c_o × c_i的全连接层



该部分总代码

import torch
from d2l import torch as d2l


def corr2d_multi_in(X, K):
    # for使得对最外面通道进行遍历,先遍历“X”和“K”的第0个维度(通道维度)
    # 使用sum 函数来遍历 X 和 K 的通道,并对每个通道对应用 d2l.corr2d 函数进行二维卷积操作,然后将所有通道的结果相加。
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))


def corr2d_multi_in_out(X, K):
    # 迭代“K”的第0个维度(输出通道),每次都对输入“X”执行互相关运算。
    # 最后将所有结果都叠加在一起
    # torch.stack([...], 0) 将上一步生成的列表中的张量沿着一个新的维度(这里是第0维,即批量大小维度)堆叠起来
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)  # 大k中每个小k是一个3D的Tensor。0表示stack堆叠函数里面在0这个维度堆叠。


def corr2d_multi_in_out_1x1(X, K):
    # 获取输入X的形状,其中c_i是输入通道数,h是高度,w是宽度
    c_i, h, w = X.shape
    # 获取卷积核K的形状,其中c_o是输出通道数
    c_o = K.shape[0]
    # 将二维的图像数据(高度和宽度)平铺成一维
    X = X.reshape((c_i, h * w))
    # # 将卷积核K的形状保持不变,因为对于1x1卷积,卷积核的形状已经是(c_o, c_i)
    K = K.reshape((c_o, c_i))
    # 全连接层中的矩阵乘法
    Y = torch.matmul(K, X)
    # 将矩阵乘法的结果Y的形状从(c_o, h*w)重塑为(c_o, h, w)
    # 即将一维的输出数据恢复成二维的图像数据(高度和宽度),同时保持输出通道数c_o
    return Y.reshape((c_o, h, w))


# (3, 3, 3)第一个3是3个通道数,后面两个3是高和宽
X = torch.normal(0, 1, (3, 3, 3))
# (2, 3, 1, 1)第一个参数2是输出,第二个参数是输入通道3,后面两个参数是高和宽,kernel数是1×1
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
print(Y1.shape)
print(Y2.shape)
print(Y1)
print(Y2)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
# 意味着1×1的卷积层相当于输入形状为c_i × n_hn_w,权重为c_o × c_i的全连接层
print(float(torch.abs(Y1-Y2).sum()))

输出:

在这里插入图片描述




问题

①网络越深,Padding 0越多,这里是否会影响性能?
    0不会影响性能。


②⭐每个通道的卷积核都不一样吗?不同通道的卷积核大小必须一样吗?
    每个通道的卷积核是不一样的,因为有多少个输出通道就有多少种卷积核。
    不同通道的卷积核是一样的,(这是因为计算上的好处,如果不一样的话得写成两个卷积操作。)即:不同通道的同一个输出通道的卷积核是一样的。

③计算卷积时,bias的有无,对结果影响大吗?bias的作用怎么解释?
    偏移是有一些用的。但没那么大的影响。

④核的参数是学出来的,不是选出来的。

⑤如果是一个RGB图像,加上深度图,相当于输入是四个通道,做卷积是和RGB三通道同样做法吗?
    不是,这地方介绍的二维卷积(只有高宽两个channel),如果加上深度这个维度,就用3D卷积。3D卷积同样有一个输入输出通道。输入就会变成:输入通道×深度×宽×高(4D),核会变成5D的张量,输出同样也是4D.

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值