mid-term exam-T2

该博客介绍了两种使用链栈实现斐波那契数列的方法。第一种方法通过直接计算和存储斐波那契数列的项,然后入栈输出;第二种方法利用数学公式直接计算斐波那契数列的项并入栈。这两种方法都展示了链栈在处理序列计算中的应用。
摘要由CSDN通过智能技术生成

栈-斐波那契数列
使用带头结点的链栈来逆序输出斐波那契数列,从命令行读入序列长度n。

方法一:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#define MAXSIZE 10

typedef int datatype;

typedef struct node
{
    datatype data;
    struct node *next;
} StackNode, *linkStack;

linkStack Init_linkStack()
{
    //初始化带头节点的链栈
    linkStack s =(StackNode*) malloc(sizeof(StackNode));
    s->next = NULL;
    return s;
}

int Empty_linkStack(linkStack s)
{
    //判断是否空栈,如果空,返回1;如果非空,返回0;
     if (s->next==NULL)
    {
        return 1;
    }else{
        return 0;
    }

}

void Push_linkStatck(linkStack ls, datatype x)
{
    //入栈
    linkStack p;
    p=(linkStack)malloc(sizeof(linkStack));
    p->data=x;
    p->next=ls->next;
    ls->next=p;
}

int Pop_linkStack(linkStack ls, datatype *x)
{
    //出栈
    linkStack p;
    if (ls->next==NULL)
    {
        return 0;
    }
    p=ls->next;
    *x=p->data;
    ls->next=p->next; //删除p结点
    free(p);
    return 1;
}

int Top_linkStack(linkStack ls, datatype *x)
{
    //查栈顶
    if (ls->next==NULL)
    {
        return 0;
    }
    *x=ls->next->data;
    return 0;
}

void Fib_linkStack(linkStack ls, int n)
{
    //利用栈结构,实现斐波那契数列。
   int f1=1,f2=1;
   Push_linkStatck(ls,1);
   Push_linkStatck(ls,1);
   for (int i = 1; i <= n-2; i++)
   {
       int s=f1+f2;
       Push_linkStatck(ls,s);
       f1=f2;
       f2=s;
   }
}

void Print_Stack(linkStack ls)
{
    while (!Empty_linkStack(ls))
    {
        
        int t;
        if (Pop_linkStack(ls, &t))
        {
            printf("%d;", t);
        }
        else
        {
            printf("NULL");
        }
    }
}

int main()
{
    linkStack ls = Init_linkStack();
    int n;
    scanf("%d", &n);
    Fib_linkStack(ls, n);
    Print_Stack(ls);
    return 0;
}

方法二:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include<math.h>
#define MAXSIZE 10

typedef int datatype;

typedef struct node
{
    datatype data;
    struct node *next;
} StackNode, *linkStack;

linkStack Init_linkStack()
{
    //初始化带头节点的链栈
    linkStack s =(StackNode*) malloc(sizeof(StackNode));
    s->next = NULL;
    return s;
}

///
补全并提交下方代码

int Empty_linkStack(linkStack s)
{
    //判断是否空栈,如果空,返回1;如果非空,返回0;
     if (s->next==NULL)
    {
        return 1;
    }else{
        return 0;
    }

}

void Push_linkStatck(linkStack ls, datatype x)
{
    //入栈
    linkStack p;
    p=(linkStack)malloc(sizeof(linkStack));
    p->data=x;
    p->next=ls->next;
    ls->next=p;
}

int Pop_linkStack(linkStack ls, datatype *x)
{
    //出栈
    linkStack p;
    if (ls->next==NULL)
    {
        return 0;
    }
    p=ls->next;
    *x=p->data;
    ls->next=p->next; //删除p结点
    free(p);
    return 1;
}

int Top_linkStack(linkStack ls, datatype *x)
{
    //查栈顶
    if (ls->next==NULL)
    {
        return 0;
    }
    *x=ls->next->data;
    return 0;
}

void Fib_linkStack(linkStack ls, int n)
{
    //利用栈结构,实现斐波那契数列。
    for (int i =1 ; i <= n; i++)
    {
       int ai=(1/sqrt(5))*(pow((1+sqrt(5))/2,i)-pow((1-sqrt(5))/2,i)); 
       Push_linkStatck(ls,ai);
    }
}

void Print_Stack(linkStack ls)
{
    while (!Empty_linkStack(ls))
    {
        
        int t;
        if (Pop_linkStack(ls, &t))
        {
            printf("%d;", t);
        }
        else
        {
            printf("NULL");
        }
    }
}

int main()
{
    linkStack ls = Init_linkStack();
    int n;
    scanf("%d", &n);
    Fib_linkStack(ls, n);
    Print_Stack(ls);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值