Python数据预处理过程:利用统计学对数据进行检验,对连续属性检验正态分布,针对正态分布属性继续使用t检验检验方差齐次性,针对非正态分布使用Mann-Whitney检验。针对分类变量进行卡方检验(涉及三种卡方的检验:Pearson卡方,校准卡方,精准卡方)等。
不懂卡方的原理可以参考:卡方检验–MBA智库
卡方检验具体的使用准则
# 四格表卡方检验用于进行两个率或两个构成比的比较。
# 要求样本含量应大于40且每个格子中的理论频数不应小于5。
# 当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。
# (1)所有的理论数T≥5并且总样本量n≥40,用Pearson卡方进行检验。
# (2)如果理论数T<5但T≥1,并且总样本量n≥40,用连续性校正的卡方进行检验。
# (3)如果有理论数T<1或n<40,则用Fisher’s检验。
具体的代码中注释很详细:
def output_statistics_info_self(data_df, category_feats, continue_feats, target,logger,nan_value=-1,info_more=True):
'''
Function:输出最全的数据的描述信息
Parameters:
data_df:DataFrame the source data
category_feats:list
continue_feats:list
target:the classification target,as the y
nan_value:default -1,represent the nan value need to be filled
info_more:default True,output the whole info;False:output the part info for client and paper
Return:
DataFrame
'''
sample_size = data_df.shape[0]
# 判断target是二分类还是多分类(三分类及其以上)
target_values=list(data_df[target].value_counts().index)
logger.info('%s取值%s'%(target,target_values))
task_type=len(target_values)
total_describe_list=[]
# 警告:做单因素分析之前必须要异常值检查,排出非数字的异常值,否则报错
# data_df[continue_feats]=data_df[continue_feats].applymap(float)
# data_df[category_feats]=data_df[category_feats].applymap(float)
# 针对二分类任务
if task_type==2:
# 针对连续属性
# 先检验连续属性是否是正态分布其次再检验是否方差齐次,才能使用独立t检验
for col in continue_feats:
logger.info('------%s--------'%col)
col_series=data_df[data_df[col]!=nan_value][col]
col_count=col_series.count()
vals=[col,'连续',col_count]
# 检验连续属性是否符合正态分布
p_value=norm_distribution_test(sample_size,col_series)
# 如果p_value>0.05 正态分布,使用独立t检验,检验连续属性在两组样本方差相同的情况下它们的均值是否相同
condition0=(data_df[target] == target_values[0]) & (data_df[col] != nan_value)
condition1=(data_df[target] == target_values[1]) & (data_df[col] != nan_value)
if p_value > 0.05:
logger.info('%s符合正态分布'%col)
# 使用levene检验方差齐次
stat,pval=levene(data_df[condition0][col].values,data_df[condition1][col].values)
if pval>0.05:
# p值大于0.05,认为两总体具有方差齐性。
t_stat, pvalue = ttest_ind(data_df[condition0][col].values,data_df[condition1][col].values,
equal_var=True)
else:
# 两总体方差不齐
t_stat, pvalue = ttest_ind(data_df[condition0][col].values,data_df[condition1][col].values,