题目描述
小L所在的L国由于没有普及移动支付,依然在大规模使用纸币。
一共有 nn 种面值的纸币,面值互不相同。
一天小L去商店购买一个价格为 XX 元的物品,他提前知道了自己手里和店员手里每种面值的纸币的数量,他想知道一共有多少种付钱-找钱的方式。
两种付钱-找钱的方式不同,当且仅当存在一种面值,在两种方案中小L付出的该种面值的纸币数量不同或店员找的该种面值的纸币数量不同。
此外,设小L付出的纸币面值总数为 YY ,则小L付出的纸币中不能存在面值小于等于 Y-XY−X 的纸币(不然就没有必要付这张纸币了)
输入格式
第一行输入两个正整数 n,Xn,X,分别表示纸币面值的数量以及小L想要购买的商品的价格。
接下来 nn 行每行三个整数 a_i,b_i,c_ia
i
,b
i
,c
i
,分别表示第 ii 种纸币的面值,小X拥有的该种纸币数量,店员拥有的该种纸币数量,保证面值 a_ia
i
单调增加。
输出格式
一行输出一个整数,表示总方案数对 10000000071000000007 取模的结果。
样例
样例输入1
3 10
1 5 3
3 2 2
5 3 2
样例输出1
5
数据范围与提示
对于所有数据,满足 a_i>0a
i
0;
对于 30%30% 的数据,n,X,a_i,b_i,c_i \le 8 n,X,a
i
,b
i
,c
i
≤8;
对于 60%60% 的数据,n,X,a_i,b_i,c_i \le 100n,X,a
i
,b
i
,c
i
≤100;
对于 100%100% 的数据,n \le 1000,X,a_i,b_i,c_i \le 10000 n≤1000,X,a
i
,b
i
,c
i
≤10000
来源
常州集训20190814
题解:
首先,容易 想到一个最暴力的算法
f[i][j]表示小L前i个货币构成j价值时的方案数。
g[i][j]表示店家前i个货币构成j价值时的方案数。
看到这你可能会想这不会超时吗??
但实际上题目满足面额单调递增。。。。。
总时间复杂度O(n^2*logn);
注意:
题目有额外限制条件:Y<x+a[i];
所以为了满足扩展时所用到的上一种货币的状态中都满足,就需要从大到小计算。
时限也很恶心。。。
取模可以优化
#pragma GCC optimize(3,"Ofast","inline")
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const long long mod=1000000007LL;
long long f[1010][20010],g[1010][20010];
long long x,a[1010],b[1010],c[1010],maxn;int n;
inline long long read(){
char ch=getchar();long long x=0,f=1;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int main(){
n=read();x=read();
for(int i=1;i<=n;++i){a[i]=read();b[i]=read();c[i]=read();maxn=max(maxn,a[i]);}
f[n+1][0]=1;g[0][0]=1;
for(int i=n;i>=1;--i){
for(int j=0;j<x+a[i];++j){
for(int k=0;k<=b[i]&&k*a[i]<=j;++k){
f[i][j]=f[i][j]+f[i+1][j-k*a[i]];
if(f[i][j]>mod)f[i][j]=f[i][j]-mod;
}
}
for(int j=x+a[i];j<x+maxn;++j)f[i][j]=f[i+1][j];
}
for(int i=1;i<=n;++i){
for(int j=0;j<maxn;++j){
for(int k=0;k<=c[i]&&k*a[i]<=j;++k){
g[i][j]=g[i][j]+g[i-1][j-k*a[i]];
if(g[i][j]>mod)g[i][j]=g[i][j]-mod;
}
}
}
long long ans=0;
for(int j=x;j<x+maxn;++j){
ans+=f[1][j]*g[n][j-x];
if(ans>mod)ans=ans%mod;
}
printf("%lld\n",ans);
return 0;
}