一.array属性
首先创建一个array:
array=np.array([[1,2,3],[3,4,5]]
array.ndim #array的维度
array.shape #array的形状
array.size #array数据多少
二.array的创建
a=np.array(list,dtype)#通用格式
a=np.zeros((m,n))#生成m*n的全零矩阵
a=np.ones((m,n))#生成m*n的全一矩阵
a=np.empty()
a=np.arange(m).reshape((a,b))
a=np.linspace(m,n,d).reshape((a,b))
三.array的基础运算
a=np.array(list)
b=np.array(list)
a. 矩阵每位加减乘及乘方运算
c=a-b
c=a+b
c=a*b
c=a**b
b. 矩阵乘法
c_dot=np.dot(a,b)
c_dot_2=a.dot(b)
c. 最大值,最小值,求和等
np.max(a,axis)
np.min(a,axis)
np.sum(a,axis)
其中axis=None时,是在求整个array的最值或和,axis=m,是求相应维度的最值或和,例如axis=0,那么求第一维度,依次类推.
关于axis的问题,参考https://blog.csdn.net/fangjian1204/article/details/53055219
d. 最大值,最小值索引值
np.argmin(a)
np.argmax(a)
e. 均值,中位数
均值
np.mean(a)
a.average()
np.average(a)
中位数
np.median(a)
f. 累加
np.cumsum(a)
g. 相邻差
np.diff(a)
h.转置
np.transpose(a)
a.T
i.过滤
np.clip(a,5,9)
四.索引,合并
a.索引
A[2,:]#第2行所有的数
A[:,2]#第2列所有的数
b.合并
np.vstack((A,B))#vertical stack
np.hstack((A,B))#horizontal stack
np.concatenate((A,B),axis=m)
c.分割
np.split(A,m,axis=n)#等量分割
np.array_split(A,m,axis=n)#不等量分割
np.vsplit(A,m)
np.hsplit(A,m)