Classification----logisitic regression

前言

在学习和实践了线性回归模型后,我们终于来到了下一站------分类问题,分类问题中经典的算法称为逻辑回归.

逻辑回归模型引入

给定一些样本以后,我们首先需要选用一个合适的样本估测函数去估计样本值,首先如果使用线性函数去模拟可以吗?现在想要预测肿瘤良性与肿瘤大小的关系,看下面这些样本在坐标系上的分布.
这里写图片描述
此时使用线性回归可以得到如下图形:
这里写图片描述
若使用线性函数模拟,在本次模拟中,根据下列函数判定,模拟效果还不错:
y = { 1 , if  p r e d i c t _ r e s u l t ≥ 0.5 0 , if  p r e d i c t _ r e s u l t &lt; 0.5 y= \begin{cases} 1, &amp; \text{if $predict\_result\geq0.5$} \\ 0, &amp; \text{if $predict\_result&lt;0.5$} \end{cases} y={ 1,0,if predict_result0.5if predict_result<0.5
可以在图像中看出,黄线左侧肿瘤预测为良性,右侧预测为恶性,目前看来一切都很正常,那我们再加入一个样本(18,1),得到的结果如下图:
这里写图片描述
预测的准确率低的离谱,这就说明在分类问题中,运用线性回归预测是不科学的,可能存在某些数据导致预测很差,那么,我们需要构造一个合理的预测函数,这个预测函数h的值最好能够满足 0 &lt; h ( x ) &lt; 1 0&lt;h(x)&lt;1 0<h(x)<1,有一个函数完美的契合了这样的条件------sigmoid function.

sigmoid function------预测函数

这个函数表达式是这样的:
ϕ ( z ) = 1 1 + e − z \phi(z)=\frac {1}{1+e^{-z}} ϕ(z)=1+ez1
它的图像是这样的:
这里写图片描述
从图像上可以看出,当z<0时, ϕ &lt; 0.5 \phi&lt;0.5 ϕ<0.5,z>0时, ϕ &gt; 0.5 \phi&gt;0.5 ϕ>0.5,并且它是连续的,位于0和1之间,我们将 z = θ T x z=\theta^Tx z=θTx代入函数,就可以得到满足条件的预测函数:
h θ ( x ) = 1 1 + e − θ T x h_\theta(x)=\frac{1}{1+e^{-\theta^T x}} hθ(x)=

### 联合分类回归递归神经网络在在线人体动作检测中的应用 对于在线人体动作检测,联合分类回归递归神经网络(Joint Classification-Regression Recurrent Neural Networks, JCR-RNNs)是一种有效的方法。这类模型能够实时处理视频流数据并识别正在进行的动作。 JCR-RNN 结构通常由两部分组成:特征提取器和递归单元。特征提取器可以采用卷积神经网络来捕捉空间特征[^1]。通过多层卷积操作,可以从输入帧中学习到丰富的视觉表示。这些特征随后被送入递归单元,在这里时间依赖关系得以建模。LSTM 或 GRU 单元常用于此目的,因为它们擅长记忆长时间序列的信息[^2]。 为了实现分类与回归任务的同时优化,损失函数设计至关重要。一种常见的做法是在同一框架下定义两个分支——一个负责预测类别标签;另一个则估计边界框坐标或其他连续变量。这样可以在训练过程中使两者相互促进,提高整体性能。 关于具体实施教程方面: - **PyTorch 实现**:许多开源项目提供了基于 PyTorch 的实现方案。例如 `torchvision` 库包含了多种预训练好的 CNN 架构可供选择作为基础特征提取模块。 ```python import torch.nn as nn class ActionDetectionModel(nn.Module): def __init__(self): super(ActionDetectionModel, self).__init__() # 定义CNN结构 self.feature_extractor = ... # LSTM/GRU 层 self.rnn_layer = nn.LSTM(input_size=..., hidden_size=...) def forward(self, x): features = self.feature_extractor(x) output, _ = self.rnn_layer(features) return output ``` - **TensorFlow/Keras 实现**:同样地,在 TensorFlow 中也可以构建类似的架构。Keras API 提供了一个高层次接口简化了复杂模型的设计过程。 除了上述技术细节外,参与相关领域会议也是获取最新进展的好途径。比如 AAAI 这样的顶级人工智能大会经常会有关于此主题的工作坊和技术报告分享会[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值