机器学习
文章平均质量分 66
CSMrZ
这个作者很懒,什么都没留下…
展开
-
Machine Learning definition
定义机器学习:对于一个具体的任务T,通过学习得到的经验E,不断的调整以优化它的性能P。(例如:对于判断邮件是否为垃圾邮件的任务,通过学习分类后得到的正确的或错误的标签,不断调整来尽可能使大部分标签正确)分类Supervised learning监督学习:给定的数据集有确定的标签,根据这些标签来进行学习,多用于回归(房价的预测)和分类(肿瘤良性判断)英文单词(malignant:恶性,benign:...原创 2018-06-21 11:53:00 · 232 阅读 · 0 评论 -
Liner Regression problem
Model Representation(模型构建) 以房价预测为例,假设有如下可供训练的数据集(数据总量为m): 住宅面积 (x) 销售价格(y) 123 45w 145 55w 120 42w … … 80 30w 将这些点绘制在直角坐标系上则为: 其中x是住宅面积,y是销售的价格,那么假设预测函数为...原创 2018-06-21 11:54:34 · 564 阅读 · 0 评论 -
Mutiple Liner Regression
一.多元线性 在上一节中提到了线性回归,不过特征量x只有1个,当特征量大于1个时,如下表: 住房面积x1x1x_1 层数x2x2x_2 卧室个数x3x3x_3 住宅年数x4x4x_4 售出价格y 2104 5 1 45 460 1416 3 2 40 232 1534 3 2 30 315 ...原创 2018-06-22 16:19:22 · 267 阅读 · 0 评论 -
Normal Equation
标准化方程 在前面的梯度下降法中我们提到过如何用矩阵来表示线性回归:θTX=YθTX=Y\theta^TX=Y那么是否可以直接用矩阵运算来解决参数θθ\theta的取值问题呢?答案是可以的,即利用如下公式便可一步得到θθ\theta的值:θT=Y(XTX)−1XTθT=Y(XTX)−1XT\theta^T=Y(X^TX)^{-1}X^T 但是该式子会引出以下在线性代数的相关问题. 为什么不直...原创 2018-06-22 19:01:21 · 271 阅读 · 0 评论 -
Numpy教程
一.array属性 首先创建一个array: array=np.array([[1,2,3],[3,4,5]] array.ndim #array的维度 array.shape #array的形状 array.size #array数据多少 二.array的创建 a=np.array(list,dtype)#通用格式 a=np.zeros((m,n))#生成m*n的全零矩阵 ...原创 2018-07-03 16:51:33 · 261 阅读 · 0 评论 -
pandas基本操作
1 pandas数据结构 1.1 series s=pd.Series([1,2,3,np.nan,5,6]) pandas中的序列,接受参数为列表,默认索引为0,1,2…. 1.2 DataFrame dates=pd.date_range('20180310',periods=6) df = pd.DataFrame(np.random.randn(6,4), index=d...原创 2018-07-12 20:29:13 · 211 阅读 · 0 评论 -
Classification----logisitic regression
前言 在学习和实践了线性回归模型后,我们终于来到了下一站——分类问题,分类问题中经典的算法称为逻辑回归. 逻辑回归模型引入 给定一些样本以后,我们首先需要选用一个合适的样本估测函数去估计样本值,首先如果使用线性函数去模拟可以吗?现在想要预测肿瘤良性与肿瘤大小的关系,看下面这些样本在坐标系上的分布. 此时使用线性回归可以得到如下图形:...原创 2018-09-06 15:45:32 · 419 阅读 · 0 评论 -
过拟合
过拟合 在进行逻辑回归和线性回归时可能出现欠拟合和过拟合现象,欠拟合和过拟合均无法有效的应用到未测试数据中,过拟合对输入的实验数据的拟合效果异常完美,但是对未加入的数据拟合结果很差。下面三个图分别代指欠拟合,拟合良好和过拟合。(图片来自大牛吴恩达的课程) 产生过拟合的原因 特征量太多,而测试数据太少。 解决方法 1.人为的舍弃特征量(略) 2.正则化 正则化的基本思想是在...原创 2018-09-17 20:47:34 · 453 阅读 · 0 评论