过拟合

过拟合

在进行逻辑回归和线性回归时可能出现欠拟合和过拟合现象,欠拟合和过拟合均无法有效的应用到未测试数据中,过拟合对输入的实验数据的拟合效果异常完美,但是对未加入的数据拟合结果很差。下面三个图分别代指欠拟合,拟合良好和过拟合。(图片来自大牛吴恩达的课程)
这里写图片描述

产生过拟合的原因

特征量太多,而测试数据太少。

解决方法

1.人为的舍弃特征量(略)

2.正则化

正则化的基本思想是在代价函数中加入惩罚因子,将特征量的影响力减小。例如假设函数 h(θx)=θ0+θ1x1+θ2x22+θ3x1x2 h ( θ x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 1 x 2 ,我们在原代价函数的基础上加上 1000θ22+1000θ23 1000 θ 2 2 + 1000 θ 3 2 ,这样我们在最小化代价函数时, θ3 θ 3 θ2 θ 2 的值趋近于0,即弱化了后两项的影响力。当我们不知道弱化具体哪些项时,可以将所有项均弱化,这就叫做正则化,默认不弱化 θ0 θ 0 项。

线性回归中的正则化
1.梯度下降

代价函数变成如下形式:

J(θ)=12m[i=1m(hθ(xi)yi)2+λi=1nθ2i] J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x i ) − y i ) 2 + λ ∑ i = 1 n θ i 2 ]

更新 θj θ j (除 θ0 θ 0 ):
θj=θj(1αλm)αmi=1m(hθ(xi)yi)xi θ j = θ j ( 1 − α λ m ) − α m ∑ i = 1 m ( h θ ( x i ) − y i ) x i

2.正规方程

正规方程变为如下形式,在原来的基础上添加了一个除第一行对角线为0,其余对角线上均为1的矩阵。(不清楚为什么,但是解决了 XTX X T X 的不可逆问题)

θ=(XTX+0....1.........1)1XTY θ = ( X T X + { 0 . . . . 1 . . . . . . . . . 1 } ) − 1 X T Y

逻辑回归中的正则化

代价函数变为如下形式:

J(θ)=1mi=1m(yiloghθ(xi)+(1yi)log(1hθ(xi))+λmj=1nθ2j J ( θ ) = − 1 m ∑ i = 1 m ( y i l o g h θ ( x i ) + ( 1 − y i ) l o g ( 1 − h θ ( x i ) ) + λ m ∑ j = 1 n θ j 2

更新 θj θ j (除了 θ0) θ 0 ) :
θj=θj(1αλm)i=1m(hθ(xi)yi)xij θ j = θ j ( 1 − α λ m ) − ∑ i = 1 m ( h θ ( x i ) − y i ) x j i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值