自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 引导方法深度补全系列—显式3D模型—1—《Deeplidar: Deep surface normal guided depth prediction for outdoor scene from 》

1.估计曲面法线作为中间表示,以生成密集深度,并将彩色图像和表面法线的估计与学习的注意力地图相结合,以提高深度精度。2.提出了一种改进的编解码结构,以有效地融合稀疏深度和密集颜色图像。3.网络预测了一个置信掩码,以处理遮挡区域。优缺点1.网络要学习的参数较多(掩码,两个注意力图,曲面法线等等),用的损失函数也是收敛较慢,实验要求环境和运行速度可能是缺点表面法线的方法是个很好的。

2022-11-24 22:56:20 417

原创 OutOfRangeError (see above for traceback): RandomShuffleQueue ‘_2_shuffle_batch/random_shuffle_queue

仅做记录,所以写的很简陋

2022-11-21 23:00:13 238 1

原创 kitti数据集内部*.jpg转换为*.png

只有一行命令但不用就要重新下载或者上传,这个操作能稍微缩短一点时间

2022-11-15 17:46:52 308

原创 引导方法深度补全系列—早期融合模型—6—《Depth completion towards different sensor configurations via relative depth ma》

先从图像中提取可靠的几何结构然后结合稀疏深度信息,模式和密度再测试的时候变化。所以把深度补全分为两个子任务我笔记里这篇文章叫杂糅因为两阶段都是拿别人的方法然后组合起来的,勉强也算是粗到精的结构。

2022-11-10 18:44:00 472

原创 引导方法深度补全系列—早期融合模型—5—《Depth completion via deep basis fitting》

不是在最后一层使用一组固定的权重,而是从倒数第二个特征到稀疏深度进行最小二乘拟合,以获得一组数据相关的权重。

2022-11-10 18:36:22 463

原创 引导方法深度补全系列—早期融合模型—4—《S2DNet: Depth estimation from single image and sparse samples》

经典的粗到细的深度补全过程,第二部分细化过程直接对粗深度图做处理,本文章是添加了注意力块以提升效果。

2022-11-10 18:32:25 622

原创 引导方法深度补全系列—早期融合模型—3—《Depth coefficients for depth completion》

红字是不理解的问题,也就是不知道为什么要这么做蓝字是不理解的步骤,就是不太知道他到底是怎么算的这文章思路挺好的,但效果一般(这个是综述里说的,还没复现)

2022-11-10 18:11:26 298

原创 引导方法深度补全系列—早期融合模型—2—《Self-supervised sparse-to-dense: Self-supervised depth completion from lidar a》

同一个作者写的,就是换成了自监督,但用的挺多的。

2022-11-10 17:57:42 201

原创 深度补全文章详读系列

此篇博文为个人记录向,内容为多篇深度补全相关论文的半详读,即主要为论文的创新方法部分,既然为学习记录就可能有错误或者不全面的现象出现,希望大家发现后及时指出以便改正。方法分类主要参考这篇综述,系列博客以综述中总结的顺序为参考,顺序研读。深度补全分为两大类,下面将一一介绍相关任务。提示:以下是本篇文章正文内容,下面案例可供参考以上就是博客全部内容,再次提醒大家,如果发现错误务必指出,共同学习共同进步。

2022-09-18 00:00:00 1354 1

原创 引导方法深度补全系列—基于SPN模型—5—《Dynamic spatial propagation network for depth completion》文章细读

1.提出了动态空间传播网络,一种非线性传播模型,动态调整亲和力权重*2.扩散抑制操作,防止迭代过拟合造成深度过于平滑

2022-09-12 02:47:32 890

原创 引导方法深度补全系列—基于SPN模型—4—《Penet:Towards precise and efficient image guided depth completion》文章细读

1.双分支结构,并加速了CSPN++,此时使用这种方法为了精细融合后的深度图

2022-09-12 02:42:11 774

原创 引导方法深度补全系列—基于SPN模型—3—《Non-local spatial propagation network for depth completion》文章细读

创新点1.CSDN使用固定局部邻域,固定的局部邻域通常具有不应与参考信息混合的无关信息,尤其是在深度边界上。NLSPN预测像素的非局部邻域.2.预测初始密集深度的置信度纳入亲和度归一化,归一化是为了减少误差,加入置信度为了指导预测值

2022-09-12 02:38:57 952

原创 引导方法深度补全系列—基于SPN模型—2—《CSPN++: Learning Context and Resource Aware Convolutional Spatial Propagat》文章细

创新点1.引入其他参数预测(自适应卷积核大小,传播迭代次数)每个像素的适当配置来增强CSPN2.加入了资源估计的触发器(可能检测一下设备的gpu),根据给定的设备调整参数,例如卷积核的大小

2022-09-12 02:35:46 1084

原创 深度补全延伸系列——1——SPN

空间传播网络(SPN)是一个通用框架,可应用于许多与亲和力相关的任务。亲和矩阵是一种通用矩阵,用于确定空间中两点的接近程度或相似程度。在计算机视觉任务中,它是一个加权图,将每个像素视为一个节点,并通过一条边连接每对像素。该边上的权重应反映不同任务的成对相似性。学习亲和矩阵的问题可以等价地表示为学习一组小的行/列方向的空间变化线性变换矩阵。空间传播网络(SPN),包含一个学习亲和实体的深度CNN和一个空间线性传播模块。

2022-09-12 02:30:45 2263

原创 引导方法深度补全系列—基于SPN模型—1—《Depth estimation via affinity learned with convolutional spatial propagat》文章细读

文章贡献我们将所设计的CSPN应用于给定单个图像的两个深度估计任务:(1)优化现有最先进方法(SOTA)的深度输出;(2)通过在传播过程中嵌入深度样本,将稀疏深度样本转换为密集深度贴图。

2022-09-12 02:23:19 685

原创 引导方法深度补全系列—晚期融合模型—1—《Dense depth posterior (ddp) from single image and sparse range》文章细读

创新点1.提出了基于贝叶斯理论的两步法网络做深度补全

2022-09-12 00:52:35 1210

原创 引导方法深度补全系列—早期融合模型—1—《Sparse-to-dense: Depth prediction from sparse depth samples and a single image》

深度回归模型:早期融合模型,在SLAM插件模块中进行稀疏地图到密集地图的转换,和LiDARs的超分辨率。论文概述从稀疏深度测量集和单个RGB图像进行密集深度预测的问题 本文的主要贡献是建立了一个深度回归模型,该模型将稀疏深度样本集和RGB图像作为输入,并预测全分辨率深度图像。学习模型确实不仅能够单独从稀疏样本中提取信息,而且能够从颜色中提取信息。 用作稀疏视觉测程/SLAM算法的插件模块,以创建精确、密集的点云。此外,我们还表明,我们的方法也可以用于三维激光雷达,以创建更密集的测量。

2022-09-12 00:43:19 422

原创 非引导方法深度补全系列——1—— 《Sparsity invariant cnns》文章细读

创新点1.提出了一种稀疏卷积层,在卷积过程中使用二进制有效性掩码来指示缺失的元素。2.大规模数据集

2022-09-12 00:30:56 978 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除