引导方法深度补全系列—早期融合模型—1—《Sparse-to-dense: Depth prediction from sparse depth samples and a single image》

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


创新点

       深度回归模型:早期融合模型,在SLAM插件模块中进行稀疏地图密集地图的转换,和LiDARs的超分辨率。


论文概述

从稀疏深度测量集和单个RGB图像进行密集深度预测的问题

       本文的主要贡献是建立了一个深度回归模型,该模型将稀疏深度样本集和RGB图像作为输入,并预测全分辨率深度图像。学习模型确实不仅能够单独从稀疏样本中提取信息,而且能够从颜色中提取信息。

       用作稀疏视觉测程/SLAM算法的插件模块,以创建精确、密集的点云。此外,我们还表明,我们的方法也可以用于三维激光雷达,以创建更密集的测量。

深度采样

      ground truth深度图中采样,对于任何深度样本的目标数量(targeted number of depth samplesm(在训练期间固定),我们计算伯努利概率(Bernoulli probability) p = m / n,其中nD*有效深度像素的总数

 

       我们的采样策略的目的是提高网络对不同输入数的鲁棒性,并创建更多的训练数据(即数据增强技术)。

数据扩充

       不同维度上对数据进行处理以达到扩充的目的(缩放,旋转,色彩抖动,颜色归一化,翻转)

损失函数

       berHu函数,引入批次相关参数c,使得损失函数在两种形式下计算,平均绝对误差(MAE)L1,均方误差L2。

 

       默认选择MAE,是对表达相同现象的成对观察之间的误差的度量;它只是散点图中每个点与 Y=X 线之间的平均绝对垂直或水平距离。换言之,MAE 是 X 和 Y 之间的平均绝对差值。此外,每个误差对 MAE 的贡献与误差的绝对值成正比。

部分实验

从稀疏的地标创建密集点云:

应用于激光雷达超分辨率,创建比原始测量更密集的点云:

      

方法详解

       网络基本结构参考了全卷积残差网络,特征提取层(编码层)由Resnet和卷积层组成,删除了原始ResNet的最后一个平均池层和线性变换层。解码层由4个上采样层和一个双线性上采样层组成。我们使用Laina等人[3]提出的UpProj模块作为上采样层。

       两种不同的结构,因为kitti数据集的图像大小是nyu数据集的三倍

优缺点:

1.在这两个数据集上,精度随着深度样本数的增加而饱和。

2.即使有许多深度样本,预测也有模糊的边界。(在瓶颈网络架构中丢失了细节)

杂七杂八

Batch Normalization的优点

(1)避免梯度消失和梯度爆炸。把越来越偏的分布强制拉回比较标准的分布,这样使得激活输入值落在非线性函数对输入比较敏感的区域,这样输入的小变化就会导致损失函数较大的变化,这样可以让梯度变大,避免梯度消失问题产生,而且梯度变大意味着学习收敛速度快,能大大加快训练速度。

(2)加快训练速度。

(3)提高模型泛化能力。因为批量标准化不是应用在整个数据集,而是mini-batch上,会产生一些噪声,可以提高模型泛化能力。


总结

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值