CUDA,cuDNN,虚拟环境,更换pip
仅为记录,不喜勿喷。
CUDA,cuDNN,虚拟环境,更换pip
1、版本问题
电脑的CUDA版本:
查看NVIDIA控制面板,然后点击右下角的系统信息,就能看到自己的显卡所支持的CUDA版本。我的显卡支持的版本为11.1.96。
然后是对照自己的CUDA的版本去找对应的GPU版本。
这个是真的浪费了我很多时间。好不容易找到合适自己版本的了,之后的下载就可以按照对应版本进行就可以了。
2、CUDA下载与安装
- 下载
由于tensorflow最高版本对应的是cuda10.1版本,那我们下载cuda10.1就可以了。在 CUDA官网中下载对应的版本就OK了。
按照下面的样子进行选择,然后下载即可。 - 安装
下载完成后,双击点开。
注:这里不太建议你改路径。
等待兼容性检查之后,就如图所示。点击继续
这里我们选择自定义,地址默认即可,最好默认地址截个图,配置环境用的到。
然后打开cmd,输入nvcc -V
,验证一下是否安装成功。
3、cuDNN安装
在英伟达官网去下载cuDNN。
如果是第一次下载,是需要会员的,注册就好了。
然后就是下载
下载完后将解压文件夹中的三个文件夹全部复制进cuda安装目录下,没有文件会覆盖
验证cuDNN是否安装成功
找到******\CUDA\v11.6\extras\demo_suite
文件夹,然后看看划红线的文件是否存在,并在红框中输入cmd。
输入deviceQuery.exe
和bandwidthTest.exe
,可以出现这些就算安装成功!
然后还需要在环境变量中添加这些
4、创建虚拟环境
在配置环境之前,首先更新一下软件源
进入Anaconda Prompt,输入conda config --set show_channel_urls yes
然后在windows系统的当前用户的目录下,可以找到.condarc的文件
打开该文件,输入如下内容:
channels:
- defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
保存后退出在Anaconda Prompt中输入conda clean -i
可以使用下面的命令进行查看以上的配置是否正确:conda config --show-sources
配置
首先在Anaconda中创建一个tensonflow-gpu的虚拟环境conda creative -n tensonflow-gpu python=x.x
python版本按照上面的表自行选择。
下载
进入到这个虚拟环境中 conda activate tensoflow-gpu
。
下载 tensonflow-gpu pip install tensorflow_gpu==2.3.1 -i https://pypi.douban.com/simple --trusted-host pypi.douban.com
。
检验
下载完后我们进行测试tensorflow的GPU版本是否安装成功
输入ipython进入ipython交互式终端,再输入命令
接着下载pytorch
在对应的虚拟环境里写下 conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
接下在等待就好啦
如果想知道自己的TensorFlow版本和型号
在pycharm中输入以下代码:
import tensorflow as tf
from tensorflow.python.client import device_lib
print("版本:", tf.__version__)
print("型号:", device_lib.list_local_devices())
之后就会显示版本号和自己下载的tensonflow是CPU版本还是GPU版本了。
遇到的问题
在pycharm中总是遇到PS(PowerShell)
解决办法:
找到Anaconda Prompt的位置,然后右键->属性->目标中选择cmd.exe到最后的所有内容进行复制。
然后进入pycharm的File -> setting,把内容复制进去,就解决了。