Leetcode从前中后序列构建二叉树题解算法

从前(或后)与中序序列构建二叉树

Leetcode 106. Construct Binary Tree from Inorder and Postorder
Leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal两道题是从前中后序列回复原二叉树,是二叉树数据结构常见的题型,现在分析解决下。

1. 基本思路分析

  • 首先明确二叉树的前中后序遍历的概念。可知前序遍历的第一个元素即根结点的关键字,后序遍历的最后一个元素即根结点的关键字,找出了根结点,再在中序遍历序列中确定左右子树的序列找出,同时在对应的前或后序列中找出相应子序列,那么重复上述思路实现根结点的左右子树的构建。
  • 只有前后序列无法确定左右子树,故此条件无法构建原二叉树。1
    举例说明,
    先序:abdgcefh—>a bdg cefh
    中序:dgbaechf---->dgb a echf

得出:a是树根,a有左子树和右子树,左子树有bdg结点,右子树有cefh结点。
在对左右子树递归上述分析,左子树的
先序:bdg—>b dg
中序:dgb —>dg b
得出结论:d是b左子树的根节点,d无左子树,g是d的右子树

2. 代码实现

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
//从前中序构建二叉树
TreeNode *BuildTreeFromPreorderInorder(vector<int> &preorder,
                                         vector<int> &inorder) {
    if (preorder.empty()) {
      return NULL;
    }
    int key = preorder[0];
    size_t n = preorder.size();
    TreeNode *root = new TreeNode(key);
    vector<int> l_pre, l_in, r_pre, r_in;
    int tmp = inorder[0];
    int b = 0;
    while (tmp != key) {
      l_in.push_back(tmp);
      tmp = inorder[++b];
    }
    size_t nl = l_in.size();
    for (size_t i = 0; i < nl; i++) {
      l_pre.push_back(preorder[i + 1]);
    }
    for (size_t i = b + 1; i < n; i++) {
      r_in.push_back(inorder[i]);
    }
    for (size_t i = nl + 1; i < n; i++) {
      r_pre.push_back(preorder[i]);
    }
    root->left = BuildTreeFromPreorderInorder(l_pre, l_in);
    root->right = BuildTreeFromPreorderInorder(r_pre, r_in);
    return root;
  }
  //从中后序构建二叉树
  TreeNode *BuildTreeFromInorderPostorder(vector<int> &inorder,
                                          vector<int> &postorder) {
    if (inorder.empty()) {
      return NULL;
    }
    auto key = *(postorder.end() - 1);
    TreeNode *root = new TreeNode(key);
    // vector<int>::iterator bin = find(inorder.begin(), inorder.end(), key);
    vector<int> new_l_in, new_r_in, new_l_post, new_r_post;
    // TODO: debug
    // copy(inorder.begin(), bin, new_l_in.begin());
    int tmp = inorder[0];
    int nb = 0;
    while (tmp != key) {
      new_l_in.push_back(tmp);
      tmp = inorder[++nb];
    }
    auto n = inorder.size();
    auto num_l = new_l_in.size();
    for (size_t i = 0; i < num_l; i++) {
      new_l_post.push_back(postorder[i]);
    }
    // copy(bin + 1, inorder.end(), new_r_in.begin());
    for (size_t i = num_l; i < n - 1; i++) {
      new_r_post.push_back(postorder[i]);
    }
    for (size_t i = num_l + 1; i < n; i++) {
      new_r_in.push_back(inorder[i]);
    }
    root->left = BuildTreeFromInorderPostorder(new_l_in, new_l_post);
    root->right = BuildTreeFromInorderPostorder(new_r_in, new_r_post);
    return root;
  

3. 更快的解法

class Solution {
public:
    // use recursion to construct the tree
    // 1. use preorder to confirm the root
    // 2. use inorder to get the boundary of left subtree and right subtree
    int pIndex = 0;
    int iIndex = 0;
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (preorder.size() == 0 || inorder.size() == 0) return NULL;
        return helper(preorder, inorder, INT_MIN);
    }
    
    // nextInorderVal: the next value after visiting the current subtree in inorder order.
    TreeNode* helper(vector<int>& preorder, vector<int>& inorder, int nextInorderVal) {
        // base case
        if (pIndex == preorder.size() || inorder[iIndex] == nextInorderVal) { return NULL; }
        
        
        // consturct the root
        TreeNode* root = new TreeNode(preorder[pIndex++]);
        root->left = helper(preorder, inorder, root->val);
        
        // inorder index
        iIndex++;
        
        root->right = helper(preorder, inorder, nextInorderVal);
        
        return root;
    }
};

  1. https://blog.csdn.net/wumuzi520/article/details/8078322 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值