60分钟入门PyTorch,官方教程手把手教你训练第一个深度学习模型

 
 

点击“凹凸域”,马上关注

 
 
更多内容、请置顶或星标

652a3f0dc327262bdb4605562d266413.png

来源:机器之心   参与:张倩

近期的一份调查报告显示:PyTorch 已经力压 TensorFlow 成为各大顶会的主流深度学习框架。想发论文,不学 PyTorch 怎么行?那么,入门 PyTorch 深度学习需要多久?PyTorch 的一份官方教程表示:只需要 60 分钟。

66dc6b581f80ad8b98c425aefe9454ef.png

教程链接:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

这是一份非常简洁的学习材料,目标是让学习者了解 PyTorch 的 Tensor 库和神经网络,以及如何训练一个可以进行图像分类的神经网络。

虽然是入门课程,但也有一定门槛:课程参与者要具备 Numpy 基础知识。

该教程共分为五节:

  1. PyTorch 简介

  2. Autograde:自动微分

  3. 神经网络

  4. 训练一个分类器

  5. 数据并行

6ba808938e593fcc136580cf1b9c8ea5.png

本教程的五大板块。

第 1 节「PyTorch 简介」介绍了 PyTorch 的基本技术细节,如 Tensor、基本操作句法,还包括 Torch Tensor 与 Numpy 数组之间的转换、CUDA Tensor 等基础知识。

如果想进一步了解 PyTorch 的 Tensor 操作信息,还可以按文中给出的链接找到相应教程,包括数学运算、线性代数、随机数等。

605ab5ec29c962fb114d36d636c8fcc9.png

第 2 节介绍了 PyTorch 中用于微分的包——Autograd。它是 PyTorch 神经网络的核心,为张量的所有操作提供了自动微分。为了更加直观地理解与之相关的术语,教程还给出了一些例子。

第 3 节介绍了训练一个神经网络的常见步骤,包括定义具有一些可学习参数的神经网络、遍历输入数据集、通过神经网络处理输入、计算损失、将梯度传播回网络参数、更新网络权重等。

fd153183fdea49e588f9fa686e9654db.png

在学会定义网络、计算损失、更新权重之后,第 4 节开始讲解如何训练一个分类器。教程使用了 CIFAR10 数据集,将训练步骤分为 5 步:

1. 载入 CIFAR10 并将其标准化;

2. 定义一个卷积神经网络;

3. 定义损失函数和优化器;

4. 训练网络;

5. 在测试集上测试网络

0afb184f7398f9599b77296a0c347f91.png

CIFAR10 数据集。

此外,这一节还讲解了如何在 GPU 上训练神经网络。

如果想进一步加速训练过程,还可以选修第 5 节——数据并行,学习如何在多个 GPU 上训练网络。

在这一教程中,每个小节都有 GoogleColab 链接,可以让学习者实时运行代码,获取实战经验。

e3aad1863867a25a0a760b4d9b52847f.gif

如果想在本地运行文件,还可以下载 Notebook。

c8c77e877c9f58303b701f315d50b12a.png

参考链接:

  • https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

  • https://news.ycombinator.com/item?id=21240057

  • https://www.youtube.com/watch?v=u7x8RXwLKcA

— END —

想要了解更多AI资讯

点这里👇关注我,记得标星呀~

请点击上方卡片,专注计算机人工智能方向的研究

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值