重新思考局部-全局上下文交互:SegNetr 在医学图像分割中的应用

导读

论文:《SegNetr: Rethinking the local-global interactions and skip connections in U-shaped networks》

今天主要介绍了一种名为SegNetr的轻量级医学图像分割网络,并针对传统编解码网络中的局部-全局交互和长跳跃连接操作进行了重新思考和改进。

众所周知,在医学图像分割领域,U-Net 类型的网络基本已经成为主流。然而,作者认为,现有的 U 型分割网络仍然存在以下问题:

  1. 集中于设计复杂的自注意力模块,以弥补基于卷积操作捕获长距离上下文依赖的不足,从而增加了网络的参数和计算复杂性;
  2. 过于简单地融合编码器和解码器的特征,忽略了它们之间空间位置的关联性。

为了解决上述问题,论文引入了一种新颖的SegNetr块,可以在任意阶段动态地执行局部-全局交互,并且具有线性复杂度。同时,论文设计了一种通用的信息保留跳跃连接,用于保留编码器特征的空间位置信息,并与解码器特征进行准确融合。

最后,本文在四个主流的医学图像分割数据集上验证了所提方法的有效性,相比于传统的U-Net,SegNetr 的参数和计算复杂性分别减少了 59% 和 76%,同时实现了与最先进方法相媲美的分割性能。值得注意的是,本文提出的方法也是一个即插即用型组件,大家可以轻松应用于任意的编解码网络,以进一步提高模型的分割性能。

方法

本文方法如图 1 所示。可以看出,SegNetr 是一个典型的分层 U 型网络,其中包括 SegNetr 块和 IRSC 两个重要组件。为了使网络更轻量化,作者基于 MBConv 作为基础卷积构建块。SegNetr 块在编码器和解码器阶段实现了动态的局部-全局交互。使用补丁合并将分辨率降低两倍,同时不丢失原始图像信息。此外,IRSC 则用于融合编码器和解码器的特征,减少随着深度增加而网络丢失的细节信息。

MBConv and Fused-MBConv in EfficientNetV2

SegNetr

首先,我们一起看下 SegNetr 块,这是 SegNetr 整个网络的核心组件,通过局部-全局交互实现特征的动态处理。它使用 MBConv 作为基础卷积模块,并引入局部和全局分支来实现交互。

如何实现“局部”和“全局”上下文捕捉?

此处,局部分支时通过计算非重叠小补丁的注意力矩阵,实现局部交互。而全局分支通过对空间上非连续补丁的聚合和位移操作,实现全局交互。局部和全局分支最终通过加权求和进行融合。这种设计不仅减少了计算复杂度,还更好地捕捉了图像中的局部和全局信息。

IRSC

信息保留跳跃连接通过 Patch MergingPatch Reverse ,实现了编码器和解码器特征的融合。其中,Patch Merging 的具体操作时将输入特征图的分辨率降低,同时扩展通道维度,以保留更多高分辨率的细节信息。而 Patch Reverse 用于恢复编码器的空间分辨率,并与解码器的上采样特征进行融合。这样可以更好地恢复特征图的细节和位置信息,提高分割的准确性。

实验

:::block-1

首先,在ISIC2017数据集上,SegNetr和TransUNet的IoU达到了最高值(0.775),比基准U-Net高出3.9%。即使是参数更少的SegNetr-S也能够获得与UNeXt-L相似的分割性能。在PH2数据集上,我们观察到基于Transformer的方法Swin-UNet的分割性能最差,这与目标数据集的数据量直接相关。而本文方法在该数据集上获得了最佳的分割性能,并保持了较低的计算开销。虽然该方法使用了基于窗口位移的注意力方法,但卷积神经网络具有更好的归纳偏差,因此与Swin-UNet或TransUNet等基于Transformer的方法相比,对数据量的依赖性较小。
:::

:::block-1

在表格2中,作者将SegNetr的IoU和Dice与双编码器FATNet进行了比较,结果显示SegNetr的IoU和Dice分别比FATNet高出1.6%和0.8%,而GFLOPs则减少了32.65。在ACDC数据集中,左心室的分割相对较容易,U-Net的IoU为0.861,但比SegNetr差1.1%。心肌位于左右心室之间,呈环状模式,所提方法的IoU比专注于边界分割的EANet高0.6%。此外,我们观察到四个网络UNeXt、UNeXt-L、SegNetr-S和SegNetr的分割性能,发现更小的参数可能限制了网络的学习能力。
:::

:::block-1

如图所示,可以看出,SegNetr 能够在较少的数据情况下准确描述皮肤病变,并实现多类别分割,最小化欠分割和过分割的情况。

:::

总结

SegNetr 通过引入 SegNetr 块和信息保留跳跃连接来改进 U 型网络的分割性能。其中,SegNetr 块通过局部-全局交互实现更好的特征表示,而信息保留跳跃连接则提供了更好的特征融合机制。这些方法使得 SegNetr 在减少计算复杂度的同时,能够获得与传统方法相媲美甚至更好的分割性能。

写在最后

如果有对深度学习在医学图像应用领域相关研究感兴趣的童鞋,非常欢迎扫描屏幕下方二维码或者直接搜索微信号 cv_huber 添加小编好友,备注:学校/公司-研究方向-昵称,与更多小伙伴一起交流学习!

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVHub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值