即插即用
文章平均质量分 93
CVHub
专注多模态视觉语言AI全栈知识分享,提供原创、多领域、有深度的前沿AI论文解读与工业成熟解决方案
展开
-
CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积(附源码)
简单总结下吧,本文主要提出了一个新颖的空间和通道重建模块(SCConv),这是一个有效的架构单元,能够通过减少广泛存在于标准卷积中的空间和通道冗余,降低计算成本和模型存储,同时提高CNN模型的性能。通过SRU和CRU,减少了特征图的冗余,同时实现了显著的性能改善,大幅减少了计算负载。此外,SCConv 是一个即插即用的模块,并且通用于替换标准卷积,无需任何模型架构调整。原创 2023-08-13 00:10:56 · 6240 阅读 · 19 评论 -
CVPR 2023 | 即插即用的注意力模块 HAT: 激活更多有用的像素助力low-level任务显著涨点!
本文提出了一种名为 HAT 的新型超分辨率 Transformer 方法,通过结合不同类型的注意力机制和大规模数据预训练,实现了更好的图像重建效果。该方法在实验证明了其在超分辨率任务中的优越性能,并超过了当前最先进方法。这项研究拓展了Transformer在计算机视觉任务中的应用,并提供了一种改进低级视觉任务的方法。原创 2023-06-04 23:58:10 · 4380 阅读 · 1 评论 -
顶刊TIP 2023 | CFP:即插即用的多尺度融合模块,助力检测分割任务有效涨点!
本文介绍了一种基于全局显式集中特征规范的对象检测方法CFP。该方法首先提出了一种空间显式视觉中心方案,其中使用轻量级MLP来捕捉全局长程依赖,并使用并行可学习的视觉中心来捕捉输入图像的局部角区域。基于所提出的EVC,该文进一步提出了一种自上而下的特征金字塔的全局集中特征规范方法。与现有方法相比,CFP不仅具有捕捉全局长程依赖的能力,还可以高效地获得全方位的、具有判别力的特征表示。实验结果表明,CFP在MS-COCO数据集上具有优异的表现。原创 2023-05-20 12:25:36 · 3144 阅读 · 0 评论 -
2023港科大新作 | 新颖注意力机制有效提升医学图像小样本语义分割精度!
少样本分割(Few-shot segmentation,FSS)的目的是通过只有少量标注的样本来分割新类别。在FSS中,数据集被分为训练集Dtrain和测试集Dtest,其中训练集包含基类别Ctrain,测试集包含新类别Ctest,且Ctrain和Ctest没有交集。为了获得用于FSS的分割模型,采用了通常使用的episode训练方法。每个训练 / 测试 $ \mathrm{episode(S_i,Q_i)}实例化一个N−wayK−shot分割学习任务。具体而言suppo。原创 2023-04-19 21:30:38 · 961 阅读 · 0 评论 -
SPM: 一种即插即用的形状先验模块,可轻松嵌入任意编解码架构,助力涨点并显著改善分割效果!
本文详细讨论了三种具有形状先验的分割模型,包括基于图谱的模型、统计形状模型和基于 UNet 的模型。为了增强 UNet-based 模型上形状先验的可解释性,本文提出了一个形状先验模块 SPM ,可以明确地引入形状先验以促进不同数据集上的分割性能。所提方法在 BraTS 2020、VerSe 2019 和 ACDC 三个主流的数据集上均实现了最先进的性能。此外,根据定量和定性实验结果,SPM 在不同的骨干网络上表现出良好的泛化能力,可作为一种即插即用的结构。原创 2023-04-19 21:22:22 · 1237 阅读 · 0 评论