底层视觉
文章平均质量分 93
介绍包括去噪、超分、增强、去雾、去模糊、修复等一系列 Low-level 视觉任务。
CVHub
专注多模态视觉语言AI全栈知识分享,提供原创、多领域、有深度的前沿AI论文解读与工业成熟解决方案
展开
-
CVPR 2024 | 首个 DP + CLIP 的 Defocus 去模糊算法
在本文中,我们利用来自CLIP的模糊相关先验知识,研究了DP图像的端到端散焦去模糊。我们首先使用模糊感知和DP感知策略的集成来估计模糊图,然后在恢复DP图像之前使用估计的模糊图作为去模糊核。我们还提出了模糊感知和模糊加权损失,通过从CLIP中提取模糊知识,在训练过程中对DP图像的恢复进行正则化约束。在大量的实验中,我们的方法在定量和定性恢复性能上都大大优于过去的方法。在未来,提出的模糊图估计策略有望将CLIP应用和扩展到各种zero-shot立体视觉任务,我们希望这将激励今后的工作。原创 2024-04-01 23:44:48 · 1600 阅读 · 0 评论 -
IJCAL 2023 | 基于美学策略引导的低光照图像增强方法
低光图像增强任务的首要目标是处理此类低质量图像中的低亮度、低对比度、噪声和伪影等问题,并使用传统方法或基于学习的方法来提高视觉质量并恢复更多的图像细节。此外,我们观察到图像美学质量评价与人类主观评价在一定程度上是一致的,因此我们尝试在训练中引入美学评价来代表人类主观视觉感知,以帮助提高低光图像增强任务的性能。由于人类对图像的修饰过程是一个动态且明确的渐进过程,与图像的当前状态因果密切相关,因此我们将 LLE 视为马尔可夫决策过程,将其分解为一系列迭代。的表现与所有可能动作的表现平均值之间的差异。原创 2023-11-04 23:13:25 · 150 阅读 · 0 评论 -
基于语义对比学习的低光照图像增强网络
本文提出了一种有效的语义对比学习范式(SCL-LLE)来解决低光图像增强问题。SCL-LLE 揭示了如何使用非配对的负样本和正样本生成视觉上令人愉悦的图像,并说明了我们如何利用语义信息来保持输入和输出之间的视觉相似性。基于特征提取网络和语义分割网络,我们将图像增强视为多任务联合学习,其中SCL-LLE被转化为对比学习、语义亮度一致性和特征保留的三个约束,同时确保颜色、纹理和曝光的一致性。实验证明,我们的方法在六个跨域数据集上相对于现有最先进的LLE模型表现出明显的改进。原创 2023-11-04 23:11:22 · 335 阅读 · 0 评论 -
基于语义对比学习的低光照图像增强网络
本文提出了一种有效的语义对比学习范式(SCL-LLE)来解决低光图像增强问题。SCL-LLE 揭示了如何使用非配对的负样本和正样本生成视觉上令人愉悦的图像,并说明了我们如何利用语义信息来保持输入和输出之间的视觉相似性。基于特征提取网络和语义分割网络,我们将图像增强视为多任务联合学习,其中SCL-LLE被转化为对比学习、语义亮度一致性和特征保留的三个约束,同时确保颜色、纹理和曝光的一致性。实验证明,我们的方法在六个跨域数据集上相对于现有最先进的LLE模型表现出明显的改进。原创 2023-09-09 10:44:14 · 359 阅读 · 0 评论 -
IJCAL 2023 | 基于美学策略引导的低光照图像增强方法
低光图像增强任务的首要目标是处理此类低质量图像中的低亮度、低对比度、噪声和伪影等问题,并使用传统方法或基于学习的方法来提高视觉质量并恢复更多的图像细节。此外,我们观察到图像美学质量评价与人类主观评价在一定程度上是一致的,因此我们尝试在训练中引入美学评价来代表人类主观视觉感知,以帮助提高低光图像增强任务的性能。由于人类对图像的修饰过程是一个动态且明确的渐进过程,与图像的当前状态因果密切相关,因此我们将 LLE 视为马尔可夫决策过程,将其分解为一系列迭代。的表现与所有可能动作的表现平均值之间的差异。原创 2023-09-09 10:43:41 · 463 阅读 · 0 评论 -
ICCV 2023 | 光与影的升华:FeatEnHancer 一种适用于任意低光照任务的即插即用模块,显著提升精度!
本文提出了一种名为的新型通用特征增强模块,旨在丰富低光视觉下有利于下游任务的分层特征。所设计的内部尺度特征增强和尺度感知注意力特征聚合策略与视觉主干网络相结合,产生了强大的语义表示。此外,既不需要在合成数据集上进行预训练,也不依赖增强损失函数。这些架构创新使成为一个即插即用的模块。对四种不同的下游视觉任务进行的广泛实验,涵盖了图像和视频,证明了所提方法相对于基线、LLIE方法和特定任务的最新方法都带来了稳定且显著的改进。欢迎对low-level。原创 2023-08-27 10:58:14 · 772 阅读 · 2 评论 -
ICCV 2023 | 南开程明明团队提出新颖注意力机制用于图像超分辨率任务
本文提出了一种新颖且高效的单图像超分辨率模型SRFormer,其核心是一个新的自注意力机制——PSA。PSA 能够在大窗口内有效地构建配对关联,而不会引入过多的计算成本,使得更多的token能参与自注意力计算。此外,SRFormer引入ConvFFN的模块,通过添加一个局部深度卷积分支来增强模型对高频信息的捕获能力。实验证明,SRFormer 在多个基准数据集上均优于现有技术,并且在参数数量和计算成本方面也表现出了优越性。如果有对深度学习在Low-level。原创 2023-08-12 23:58:38 · 1006 阅读 · 1 评论 -
无惧暗光!| PE-YOLO: 夜视环境物体检测新突破(附源码实现)
PE-YOLO 是一种新颖的暗环境物体检测框架,该框架整合了金字塔增强网络(PENet)和YOLOv3。为了解决在暗光条件下图像可见性差的问题,该方法使用拉普拉斯金字塔将图像分解为具有不同分辨率的多个组件。然后,利用新提出的详细处理模块(DPM)和低频增强滤波器(LEF)增强这些组件的详细信息和低频信息。PE-YOLO以端到端的方式进行训练,无需额外的损失函数。通过在ExDark数据集上进行的实验,PE-YOLO相较于其他的低光照增强模型和暗光物体检测器,显示出了最佳的性能。原创 2023-08-12 23:52:56 · 1780 阅读 · 12 评论 -
即插即用系列 | PromptIR:MBZUAI提出一种基于Prompt的全能图像恢复网络
通过将提示块集成到最先进的恢复模型中,本文展示了提示块在全能图像恢复中的实用性,在图像去噪、去雨和去雾任务上取得了显著的改进。这限制了它们在实际应用中的使用,因为需要针对每种具体的退化进行单独训练模型,并了解输入图像的退化类型才能应用相应的模型。因此,本文提出了提示生成模块(PGM),它从输入特征中动态预测基于注意力的权重,并将这些权重应用于提示组件,生成与输入条件相关的提示。PromptIR提出了一个即插即用的提示模块,它隐式地预测与退化条件相关的提示,以引导具有未知退化的输入图像的恢复过程。原创 2023-07-22 23:31:57 · 553 阅读 · 0 评论 -
北大&港大 CVPR 力作 | ESRT: 集轻量高效于一体的单图超分网络
如果您也对人工智能和计算机视觉全栈领域感兴趣,强烈推荐您关注有料、有趣、有爱的公众号『CVHub』,每日为大家带来精品原创、多领域、有深度的前沿科技论文解读及工业成熟解决方案!同时欢迎添加小编微信: cv_huber,备注CSDN,加入官方学术|技术|招聘交流群,一起探讨更多有趣的话题!原创 2023-03-19 10:09:21 · 850 阅读 · 1 评论 -
CVPR2023 即插即用系列 | 一种高效轻量的自注意力机制助力图像恢复网络问鼎SOTA!
如果您也对人工智能和计算机视觉全栈领域感兴趣,强烈推荐您关注有料、有趣、有爱的公众号『CVHub』,每日为大家带来精品原创、多领域、有深度的前沿科技论文解读及工业成熟解决方案!同时欢迎添加小编微信: cv_huber,备注CSDN,加入官方学术|技术|招聘交流群,一起探讨更多有趣的话题!原创 2023-03-19 09:41:31 · 5410 阅读 · 1 评论 -
致敬何凯明的暗通道去雾算法 | NAS-Net: 基于非对齐监督的图像去雾框架
本文使用非对齐监督的真实世界图像提出了一种新颖有效的去雾框架。该框架利用多尺度参考损失将去雾网络的预测与清晰且未对齐的参考图像进行比较。它可以从现实环境中收集模糊/清晰的图像对,即使它们没有完全对齐。此外,所提框架包括一个均值和方差自注意力网络,该网络在改进空气光均值和变化的估计之前使用暗通道。最终,实验结果表明,所提方法对真实世界图像进行去雾方面优于最先进的方法。原创 2023-03-19 09:25:43 · 560 阅读 · 0 评论