GPT
文章平均质量分 91
CVHub
专注多模态视觉语言AI全栈知识分享,提供原创、多领域、有深度的前沿AI论文解读与工业成熟解决方案
展开
-
独步潮流!如何在私有数据集上塑造GPT式大型语言模型的独特风格!
在本文中,我们了解了如何使用 LLaMA-Adapter 方法和 LoRA 在单个 GPU 上对 Falcon 等最先进的开源 LLM 进行微调。通过本文,我们知道传统的全层微调需要耗费 9 个小时,并且至少需要 6 个 A100 GPU,每个 GPU 需要 40 GB 的 RAM。而本文介绍的参数高效微调方法可以在单个 GPU 上将同一模型的微调速度提高 9 倍,且所需 GPU 内存减少了 15 倍。在实践中,大家可能会想知道如何将这些方法应用于自己的数据集。原创 2023-07-01 10:37:34 · 410 阅读 · 0 评论 -
言简意赅 | 旷视最新研究 ChatSpot: 让多模态大语言模型“更懂你的心”!
今天我们为大家介绍的这款新模型,可以看出它的不同之处便是——“言简意赅”,大白话就是用户并不需要描述一堆“上下文”来表达自己的诉求,这就像赋予了多模态大语言模型“一双眼睛”一般,直接指哪说哪,非常的有趣!本着实事求是的探索精神,阿伟也为大家率先体验了一番:以下是一些试验性的对话记录:可以看出,模型确实是能够“理解”用户的意图并“准确”的回答出来。但本质上仍然还是会受到 LLM 普遍会犯的 “困惑” 窘境,即掉入用户错误的提示当中。当然,像ChatGPT。原创 2023-07-01 10:26:52 · 133 阅读 · 0 评论 -
视觉GPT | SegGPT:大通用分割模型登场!利用视觉 prompt 分割万物
本文介绍了一种基于上下文视觉学习的通用分割模型SegGPT,展示了如何设计合适的训练策略,充分利用上下文视觉学习的灵活性。该模型在处理领域内和领域外的分割任务方面表现出强大的能力。然而,文章也指出了一些缺点,在上下文训练中引入了新的随机着色机制,使得训练任务本质上更加困难。我们相信,SegGPT在图像/视频分割领域中有潜力成为实现更多种类应用的有力工具。后续我们计划通过扩大模型规模来进一步提高性能,但这也带来了寻找更多数据的挑战。我们希望我们的工作能够激励社区继续探索计算机视觉中上下文学习的潜力。原创 2023-04-19 21:32:43 · 604 阅读 · 0 评论 -
一文读懂并学会最火爆的 AutoGPT 应用
Auto GPT 是一款人工智能应用程序,可以帮助用户自动化和优化业务流程,生成测试用例,调试代码,甚至还能产生新的业务创意。原创 2023-04-15 11:24:42 · 477 阅读 · 0 评论