本文参考多位从事自动驾驶行业相关工作人员意见,收集大量公开的参考内容,整理出了完整的自动驾驶学习路线及800G资料,包括教学视频、文献、开源项目、数据集以及面试题汇总,也有交流群可以提供大家与业内大咖交流内推的机会。
全文约3500字,建议收藏后配合文末汇总资料包学习,希望本文对广大自动驾驶从业者有所裨益。
视频
1. 入门
Udacity无人驾驶入门
(对入门小伙伴的帮助很大)
百度与Udacity合作免费课程
(可以对整个无人驾驶算法建立框架性的认识)
MIT自动驾驶访谈
(主要是一些业界大神的分享)
2. 进阶
多伦多大学自动驾驶免费课程 | Coursera
(Launch Your Career in Self-Driving Cars. Be at the forefront of the autonomous driving industry.)
德国波恩大学的自动驾驶免费课程 | Coursera
(Techniques for Self-Driving Cars" taught at the University of Bonn)
MIT自动驾驶免费课程 | YouTube
(Self-Driving Cars: State of the Art (2019), taught by Lex Fridman,双语字幕版可在B站搜索。)
3. 状态估计与定位
SLAM系列课程 | 深蓝学院
(课程包括高翔的视觉SLAM课程以及状态估计课程、任乾的多传感器融合定位、贺一家的VIO课程等,深蓝的SLAM课程体系建设比较完善,一定程度上提高了国内这个领域的招聘门槛。据说课程中的内容现在已经作为企业招聘时考察的知识点。)
高翔早期录制的SLAM课程
iMorpheusAI的自频道 | 优酷视频
波恩大学Cyrill Stachniss教授的Mobile Sensing And Robotics
(Cyrill Stachniss是领域内知名的学者,课程对SLAM进行了全面的介绍。但课程视频由于口音等问题,难听懂。)
4. 环境感知
吴恩达深度学习 | B站
李宏毅机器学习 | B站
(这两个推荐初学者入门学习)
Udacity传感器融合课程
(市面上第一门融合感知的课程,对于掌握融合感知的框架是非常有帮助的。不过课程价格比较高,并且课程中涉及到的内容过于基础。)
多传感器融合感知 | 深蓝学院
三维点云处理 | 深蓝学院
(市面上第一门三维点云的课程,不过课件是英文的,需要大家打印出来做好笔记。)
物体检测与分割
(B站类似课程有很多,建议自行搜索。)
5. 运动规划
Coursera宾利法尼亚大学 | Coursera
(Robotics: Computational Motion Planning)
移动机器人运动规划 | 深蓝学院
(Motion Planning for Mobile Robots)
扫码备注【自动】免费领取
自动驾驶学习资料汇总
书籍
1. 入门
《第一本无人驾驶技术书》
(作为入门是很好的书,覆盖了自动驾驶研究领域的方方面面,深度虽不足,但广度足够,可以阅读此书以获得一个总体认识。)
《无人驾驶:人工智能如何颠覆汽车》
2. 进阶
《HandBook of Intelligent Vehicles》
(近1700页的论文合集,每个section关注自动驾驶汽车的一个方面,像是《第一本无人驾驶书》的全面增强版。)
《The DARPA Urban Challenge》
(本书由参与2009城市DARPA挑战赛的队伍所写论文集合而成,相当于创世纪著作了。在新技术层出不穷的当下,这本书也依然非常有价值。)
《无人驾驶原理与实践》
《自动驾驶技术概论》
(北京航空航天大学和百度自动驾驶事业群组联合编写)
《Probabilistic Robotics 概率机器人》
(机器人领域的经典著作,SLAM研究的经典与权威。)
3. 地图与定位
《视觉SLAM十四讲》
(可以搭配前面高翔的课程)
《机器人学中的状态估计》
《Computational Geometry》
(计算几何介绍,主要用于地图库API)
视觉slam从理论到实践基础知识导图 | 深蓝学院
4. 感知与规划
《动手学深度学习》
(深度学习在感知领域应用很多)
《Pytorch Documentation》
(Pytorch官方手册 )
《计算机视觉》
《PLANNING ALGORITHMS》
(英文版规划算法介绍)
《Modern Robotics》
(机器人规划控制)
《Trajectory Planning for Automatic Machines and Robots》
(轨迹规划)
多传感器融合感知知识导图 | 深蓝学院
扫码备注【自动】免费领取
自动驾驶学习资料汇总
开源项目
整理自知乎用户:王方浩
1.全栈
Apollo - 百度的自动驾驶项目,集成了无人驾驶的各个模块,值得推荐。但其中一些核心部分并没有开源,比如融合感知模块核心的tracking部分。
autoware - 名古屋大学的自动驾驶项目,最早的自动驾驶开源项目之一
2. 仿真
Udacity - 优达学城的自动驾驶仿真平台
PreScan - 西门子公司旗下开发ADAS和智能汽车系统的仿真平台
Carla - Intel和丰田合作的自动驾驶项目
AirSim - 微软的仿真平台,还可以用于无人机
lgsvl - LG的自动驾驶仿真平台
3. 中间件
ROS - 机器人操作系统 (ROS) 是一组软件库和工具,可帮助您构建机器人应用程序。Cyber - Baidu Apollo使用的中间件。
Autosar - 汽车开放系统架构(闭源收费),一系列汽车软件框架,软件厂家可以根据自己的要求开发或定制。
数据集
整理自知乎用户:不努力一下子
1. 驾驶数据集
ApolloCar3D - 该数据集包含5,277个驾驶图像和超过60K的汽车实例。
H3D - HRI-US - 本田研究所于2019年3月发布其无人驾驶方向数据集,相关介绍在arXiv:1903.01568。
KITTI - 数据集为使用各种传感器模式,是目前最知名的自动驾驶数据集之一,一些创业公司都会拿里面的数据进行排名比赛。
Cityscape Dataset - 专注于对城市街景的语义理解。
Mapillary - 是一个由位于瑞典马尔默的Mapillary AB开发,用来分享含有地理标记照片的服务。其创建者想要利用众包的方式来把整个世界(不仅是街道)以照片的形式存储。
comma.ai's Driving Dataset - 目的是低成本的自动驾驶方案,目前是通过手机改装来做自动驾驶,开源的数据主要是行车记录仪的数据。
Udacity's Driving Dataset - 优达学城的自动驾驶数据集,优达学城真的是业界良心,希望国内也多点靠谱的网课。
Washington DC's Lidar Data - 看起来像是亚马逊的数据?
BDDV - Berkeley的大规模自动驾驶视频数据集。
Oxford RobotCar - 对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气、行人和交通情况下的数据,也有建筑和道路施工时的数据。1000小时以上。
nuscenes - 安波福于2019年3月正式公开了其数据集,并已在GitHub公开教程。是迄今为止公布的最大的多模态3D 无人驾驶数据集。
Waymo open dataset - waymo在CVPR2020上提供的自动驾驶数据集,数据量和场景都非常完整。
2. 交通标志数据集
KUL Belgium Traffic Sign Dataset - 比利时的一个交通标志数据集。
German Traffic Sign - 德国交通标注数据集 。
STSD - 超过20 000张带有20%标签的图像,包含3488个交通标志。
LISA - 超过6610帧上的7855条标注。
Tsinghua-Tencent 100K - 腾讯和清华合作的数据集,100000张图片,包含30000个交通标志实例。
扫码备注【自动】免费领取
自动驾驶学习资料汇总
面试真题
最新AI面试题汇总(2022秋招题库) - 深蓝学院的文章 - 公众号深蓝AI
图像处理面试题汇总(2022秋招题库) - 深蓝学院的文章 - 深蓝AI
2022最新自动驾驶面试题汇总 - 深蓝学院的文章 - 深蓝AI
2022最新SLAM面试题汇总 - 深蓝学院的文章 - 深蓝AI
完整面试题库已整理放入资料包
文献视频资料、数据集、完整面试真题已整理打包,更有一线自动驾驶交流群可以提供大家与业内大咖交流和企业内推的机会,文末扫码加群。
因平台限制,视频等资料无法添加链接,可以扫码获取全部资料集合及对应链接。
扫码备注【自动】免费领取
自动驾驶学习资料汇总