国内C刊声明:隐瞒ChatGPT使用情况,将退稿或撤稿处理!

多份学术期刊和会议,如《暨南学报》、《天津师范大学学报》、Science、Nature和ICML,宣布不允许使用ChatGPT等大型语言模型工具进行论文创作或署名。这些机构强调论文的原创性和作者的创造性,要求作者在使用相关工具时公开透明,并可能将隐瞒使用情况视为抄袭或退稿处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 编辑 | CVer

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

国内情况

近期,《暨南学报(哲学社会科学版)》发布关于使用人工智能写作工具的说明。

说明提到,暂不接受任何大型语言模型工具(例如:ChatGPT)单独或联合署名的文章。在论文创作中使用过相关工具,需单独提出,并在文章中详细解释如何使用以及论证作者自身的创作性。如有隐瞒使用情况,将对文章直接退稿或撤稿处理。对于引用人工智能写作工具的文章作为参考文献的,需请作者提供详细的引用论证。

433cd0c61dcf413c854ffb74849c850e.png

此外,《天津师范大学学报(基础教育版)》也发布相关声明建议作者在参考文献、致谢等文字中对使用人工智能写作工具(如:ChatGPT等)的情况予以说明。

e546189448d62bed037a923a4c4c17ed.jpeg

国外情况

Science 发文,因为论文的原创性要求,禁止在投稿论文中使用ChatGPT生成的文本,明确此类内容属于抄袭,也不能将ChatGPT列为论文作者

6f25864d1d055e15ede5c94547a6ea7d.png

截图源自:Science

Nature 在其投稿指南中,加入了相关限制措施,主要有以下两点:

(1)任何大型语言模型工具(如ChatGPT)都不能成为研究论文的署名作者;

(2)如在论文写作中用过相关工具,作者应该在“方法”或“致谢”或适当的部分明确说明这种使用情况

b1ff6f8c00460ac672423c1c0601273a.png

截图源自:Nature

ICML 发布2023论文征稿公告,会议要求所有研究者,包括审稿人,禁止使用大型语言模型(LLM)撰写论文,如ChatGPT,除非生成的文本作为论文实验分析的一部分呈现。

111e7643d20b55fd68bed4572f560e7d.png

截图源自:ICML

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值