作者 | 自动驾驶专栏 编辑 | 自动驾驶专栏
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【多传感器融合】技术交流群
本文只做学术分享,如有侵权,联系删文
论文链接:https://arxiv.org/pdf/2309.06547.pdf
数据集链接:http://amodalsynthdrive.cs.uni-freiburg.de
摘要

本文介绍了AmodalSynthDrive:一个用于自动驾驶的合成非模态感知数据集。与人类不同,即使在部分遮挡的情况下,人类也可以毫不费力地估计物体的整体,而现代计算机视觉算法仍然发现这一方面极具挑战性。由于缺乏合适的数据集,利用这种非模态感知进行自动驾驶在很大程度上仍未得到开发。这些数据集的生成主要受到昂贵标注成本的影响,以及需要减轻标注者在准确标注遮挡区域的主观性带来的干扰。为了解决这些限制,本文引入了AmodalSynthDrive,这是一种合成的多任务非模态感知数据集。该数据集提供了150个驾驶序列的多视图相机图像、3D边界框、激光雷达数据和里程计,其包括了在各种交通、天气和光照条件下超过1M的目标标注。AmodalSynthDrive支持多种非模态场景理解任务,包括引入的非模态深度估计用于增强空间理解。本文为每项任务评估若干基线,以说明挑战并且设置公开基准服务器。
主要贡献

本文的贡献总结如下:
1)本文提出了AmodalSynthDrive数据集,这是一种针对城市驾驶场景的全面合成非模态感知数据集,具有多种数据来源;
2)本文提出了针对非模态感知任务的基准,即非模态语义分割、非模态实例分割和非模态全景分割;
3)新型的非模态深度估计任务旨在促进增强空间理解。本文通过若干基线证明了这项新任务的可行性。
论文图片和表格

总结

感知是自动驾驶汽车的一项关键任务,但是目前的方法仍然缺少对复杂交通场景解释所需的非模态理解。为此,本文提出了AmodalSynthDrive,这是一个用于自动驾驶的多模态合成感知数据集。通过合成的图像和激光雷达点云,我们提供了一个全面的数据集,其包括用于基本非模态感知任务的真值标注数据,同时还引入一种新的任务来增强空间理解,称为非模态深度估计。本文提供了超过60000个单独的图像集,每个图像集与非模态实例分割、非模态语义分割、非模态全景分割、光流、2D&3D边界框、非模态深度以及鸟瞰图相关。通过AmodalSynthDrive,本文提供了各种基线,并且相信这项工作将为动态城市环境的非模态场景理解的新型研究铺平道路。
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!