算法推理部署,面了40多个大佬的感想!

作者 | Oldpan  编辑 | oldpan博客

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【模型部署】技术交流群

本文只做学术分享,如有侵权,联系删文

dc91f4be6d0d5ac43a2d1cf19d0c29c5.gif 

今年三月份到现在陆陆续续面了40来个人,有实习生,有校招生,也有来社招的大佬们。面了挺久,有些总结和感想,发出来和大家交流交流,也趁着这个机会为之后参与校招的同学提供一些学习方向。

我面的岗位主要是算法工程师,也会面试一些推理相关的人。

简单从这三点说:

  • 对候选者的要求

  • 大家的水平

  • 未来的看法

实习生

第一个是招实习生,实习生的简历,大家的学校感觉都不错,北邮、北航、东南大学、厦门大学、大连理工、西交西电等等,项目做的也都很多,有发表过一些顶会的也有其他不错期刊的。也有同时在其他公司实习的,这种有公司实习经历的同学我们肯定是优先考虑,毕竟在公司实习能有个完整的项目啥的,而且ssh、git、docker一些常用工具也都会用。

7fbf96eca004a43d2079a2f7d8c32b4b.gif

不过实习生的话,公司要求没有校招高,只要有对口的项目,代码能力过关,来了我们都愿意培养,一起搞个项目,学生嘛,学习起来很快,上手新项目多带带很容易就会了。重点说下代码能力必须要过关,你项目不多不要紧,你来了可以学,代码能力不行就会怀疑你项目是咋做的有没有自己亲自动手做的。

还有一个是要求实习生对基础理解的比较好些,项目虽然可以不用太多,但是你做过的项目细节,自己必须要清楚,深入问的时候能够回答上来,比如一个BN层,训练和推理有哪些表现不一样,有哪些参数需要更新等等,这些细节面试的时候大部分人都说不全,不能一次性说对。

总结下对实习生的要求:

  • 项目可以不多,但是要精

  • 基础知识要好

  • 代码能力过关

就OK了,至于方向的话,只要是和算法CV相关就行。

校招生

校招生要求会高一些,校招生的学校和实习生没区别,也都挺好,不过看简历项目明显多了一些(最起码暑假阶段找了个实习,然后秋招面试的时候可以写上去),对于校招生来说,除了基础知识外,更要看项目是否匹配啥的。

因为现在深度学习算法咋说也火了好多年了,从神仙打架到诸神黄昏了。到现在简历上搞一些什么使用unet训练一个分割网络实现某个任务,或者说使用yolov7检测某个目标已经不是什么亮点了。不过这种也不是不行,但你需要更多的深度我才会感兴趣:

  • 网络结构有无值得说明的改进

  • 为什么这样做可以明确说出原因和数据证明

  • 对使用这个方法以及和其他方法做过比较详细的对比,选择这个模型是有理由的

现在是大模型和多模态的时代,大模型确实在很多场景上都应用的挺好而且都能落地,比如chatgpt以及基于llama的各种开源模型在各种场景上的应用,隔几天就能出一个大模型、隔几天刷一次榜;多模态的话,gpt4已经可以看图生图了(gpt-plus用户可以体验),而且效果也比较惊艳,这种多模态潜力还是很大的,有很多开源的项目可以借鉴:

  • https://github.com/QwenLM/Qwen

  • https://github.com/IDEA-Research/GroundingDINO

  • https://github.com/Vision-CAIR/MiniGPT-4

因此也希望校招生有多模态相关的项目(实话实说,多模态和大模型对显卡的要求比普通项目更高,确实在学生时代搞还是挺难...),多模态,和CV结合再和NLP结合,都能搞出不错的项目。

d5f29fe26569406136808ef6aadd7b2f.gif

比较简单点的多模态可以尝试下grounding dino,对于稍稍的大模型+目标检测来说是一个不错的点子:

da240c0dc9862bca3e5f6b493cdcc651.png

话说回来,在面试今年算法校招生的时候,就更想要一些偏多模态,

至于部署工程方面,我也看到很多校招生有一些工程的项目,比如使用C++写个模型的前后处理,比如剪枝量化啥的,不过感觉都不是很深,比如关于剪枝的细节,问具体剪的是哪?剪网络层?剪通道?还是剪kernel,回答的都不是很清楚,还有量化,因为现在很多库对量化支持的很好,大家普遍调用一下API看到结果好就好了,也没有看细节,这个一问就问出来了(比如trt的量化,有api可以直接量化)。这些部署可以搞得再细一点,不过这些童鞋在大家都一样的基础上,你再会C++、再会一些部署方向的东西,比只会写python算法的肯定要强些。

推理相关

推理面了一些校招以及一些社招,大家的方向大概是这几种:

  • 搞上层编译器的(类似于torch-tensorrt的利用pytorch生态和TensorRT生态的在nvidia显卡加速的编译器,不需要自己写codegen),会针对不同的后端(比如onnx和torchscript)写parser,针对计算图写一些pass;也有搞基于MLIR的编译器的,在自己的公司硬件上跑,前端中端后端需要都搞

  • 搞推理框架的,就是优化训练和部署中的一些性能问题、精度溢出问题;有些公司喜欢搞统一的框架(训练和部署都解决了),不喜欢用现有的轮子,要自己造;对于加速类的推理框架,会实现比如模拟量化功能、精度对比功能等等

  • 搞加速的,就是对任务中各种瓶颈的算子进行加速,C++转cuda,python转c++等等,使用C++封装一些项目blabla

有些社招的大佬做的比较深,细节说的比较好,也对新的技术(比如新显卡hopper架构)有探索的热情(面试过一些35+的大佬,热血激情不分年龄),在多个大厂待过,很强。

e8375c7245c7ae3dcb5b59fabc9f9466.gif

也有一些优秀的校招生,项目优化op的细节都能答上来,加分~也有几个校招生不清楚项目为啥要这么做,问则答曰领导要求的,问有没有自己的想法,回答的也不是很好,这种是比较降分的。

感想

预计明年的热点还是大模型和多模态,而部署加速一直有需求。问了面试的算法校招生,说今年难度也挺大,有好学校的秋招过了国庆目前只有一个offer。

还有因为大模型,一开始各个厂抢大模型加速的人才比较剧烈,不过现在应该好多了。

其余一些想说的:

  • 面了不少寒武纪和百度的大佬

  • 有工作7、8年的大佬,在多个大厂待过然后目前在创业公司

  • 也有离职(自己原因、公司原因)待业的大佬

环境依然不是很乐观,之后一起加油!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署协同感知语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

22b333540e562156471070cb456321bf.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

47b645b36df75205ae695470bae9914f.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

11232675212e3d7d1aae4c8b1196a229.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

a757d7915af97f8f0423a3c3bb39e0e9.jpeg

资源下载链接为: https://pan.quark.cn/s/a55a57705e7e “八爪鱼采集器8.1.24.zip”是一个包含八爪鱼采集器8.1.24版本的压缩包。八爪鱼采集器是一款功能强大的网页数据抓取工具,能够帮助用户自动化地从互联网中提取各类信息,例如文章内容、产品价格、用户评价。等它在数据分析、市场研究、竞争情报等领域具有重要的应用价值。 压缩包内包含以下四个文件: “Octopus Setup 8.1.24.exe”:这是八爪鱼采集器的安装程序。用户可以通过运行该文件在计算机上安装8.1.24版本的八爪鱼采集器。安装过程中,系统会提示用户阅读并接受许可协议,选择安装路径,并且可能需要管理员权限来完成安装。 “八爪鱼8版本说明.txt”:该文本文件详细介绍了八爪鱼采集器8版本的主要功能、改进点和更新内容。它可能涵盖新功能的说明,例如更智能的爬虫算法、增强的数据处理能力、优化的用户界等。此外,还可能包含关于如何使用新版本的指导,以及与旧版本的对比。 “安装前必读.txt”:这是一个重要的文档,用户在安装八爪鱼采集器之前应仔细阅读。它可能包含系统需求、安装步骤以及注意事项,例如确保操作系统兼容性、关闭杀毒软件以避免误报、预留足够的硬盘空间等,以确保安装过程顺利且安全。 “配置规则必读.txt”:这是一份关于如何配置和定制八爪鱼采集器的指南,尤其是针对新用户。采集器的配置规则是其核心功能之一,用户可以根据这些规则设置要爬取的网站、指定抓取的数据字段、设定爬取频率以及数据处理方式等。该文档可能包含一系列实例和最佳实践,帮助用户更好地理解和使用八爪鱼采集器的功能。 八爪鱼采集器8.1.24版本提供了一套完整的网页数据采集解决方案,从安装到配置,再到实际采集操作,都有详细的指导文件。用户通过学习和使用该工具,可以高效地从网络上获取大量有价值的信息,为各种业务决策提供
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值