USGS简介
USGS是U.S. Geological Survey的简写,里面包含了大量实验,地面以及航拍场景中的光谱数据。包含了AVIRIS在内的数个知名传感器的数据被以ASCII与GIF格式保存在里面。其包含大量元素的纯像元数据,从矿物,土壤等地面物体,到人造物,有机物。
我的工作
然而,包含如此大量数据的光谱却并不能直接进行使用,因为光谱库中数据与其传感器往往是对应的,这是因为不同传感器的通道数量,空间分辨率,通道宽度,以及仪器响应函数往往是并不相同的。因此,使用光谱库之前,必须对自己的HSI(HyperSpectral Images)进行确定,或者搜集自己希望使用的数据集。
数据集搜集
我在这里整理了一些可以找到的高光谱数据集与它所对应的传感器。(这部分,可能借鉴了网上的部分资料)
AVIRIS传感器
- Indian Pines 是一个 145 × 145 × 224 145\times145\times224 145×145×224尺寸的子图,有224通道和16个类别,从400到2500nm波长范围,全图三分之一为森林,另外为种植园。需要注意的是,由于传感器的限制,[104 - 108], [150 - 163] 和 220通道将被清理,由于这部分是水吸收频段。
- Salinas是一个 512 × 217 × 224 512\times217\times224 512×217×224尺寸的大图,并有3.7meter/pixel,从400到2500nm波长范围,全图包括蔬菜、裸地和葡萄园。需要注意的是,由于传感器的限制,[104 - 108], [150 - 163] 和 220通道将被清理,由于这部分是水吸收频段。
- Cuprite是包含在 AVIRIS NASA数据中的f970619t01p02_r02_sc03.a.rfl
- Kennedy Space Center是AVIRIS在224个10nm宽的波段中采集数据,中心波长为400-2500nm。KSC数据从约20km的高度采集,空间分辨率为18m。在去除吸水率和低SNR频带后,176个频带用于分析。
- NASA DataPort是公开的AVIRIS数据池塘,包含传感器收集自2006年至今的大量高光谱图像数据。
POSIS传感器
pass
数据集读取
我们以NASA DataPort为例子,从下载到读取到TorchDataSet走一遍流程。
-
数据集下载
进入官网,选择Data Table中你喜欢的数据,找到link_ftp部分,复制并选择下载。
-
解压并预处理
各文件解析:
.doc:为产品介绍,主要介绍他自己的处理方法
.info:数据的获取方式,里面包含拍摄者编号等信息
.gain:储存着通道的缩放因子,具体用法为,当每个光谱除以此文件中的因子时,16位整数将转换为单位为(微瓦/cm^2/nm/sr)的辐射亮度。
.geo: 储存着空间分辨率的关键信息,Spatial sampling interval,Spatial response function,Spatial sampling interval uncertainty, Spatial response function uncertainty,Channel number等
.rcc:AVIRIS辐射定标系数和实验室定标不确定度
.readme:使用说明书
.spc:AVIRIS 光谱校准参数,注意,对于高光谱图像,这十分重要,包含了带宽中心,等效高斯半最大全宽,波长中心的不确定度,FWHM,通道数
.eng:工程数据(不确定)
.nav:导航数据(不确定)
.igm:图像每个像素点的地理位置,其中通道一为东距,通道二为北距离。
.glt:负值表示该像素点是相邻像素点插值获得的。
.img/_img:像素点乘上映射因子。
.img.hdr:每个AVIRIS校准辐射场景的格式。此文件包含行数、样本数、通道数、整数格式等。 -
MATLAB初次读取
-
Python读取(分类方向)