1010 Radix (25)(25 分)



1 题目


Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is “yes”, if 6 is a decimal number and 110 is a binary number.

Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.

Input Specification:

Each input file contains one test case. Each case occupies a line which contains 4 positive integers:\ N1 N2 tag radix\ Here N1 and N2 each has no more than 10 digits. A digit is less than its radix and is chosen from the set {0-9, a-z} where 0-9 represent the decimal numbers 0-9, and a-z represent the decimal numbers 10-35. The last number “radix” is the radix of N1 if “tag” is 1, or of N2 if “tag” is 2.

Output Specification:

For each test case, print in one line the radix of the other number so that the equation N1 = N2 is true. If the equation is impossible, print “Impossible”. If the solution is not unique, output the smallest possible radix.

Sample Input 1:

6 110 1 10

Sample Output 1:

2

Sample Input 2:

1 ab 1 2

Sample Output 2:

Impossible

题目链接:https://pintia.cn/problem-sets/994805342720868352/problems/994805507225665536

2 解题思路

  题目的大意是,给你两个数,N1和N2,给定其中一个数的基数,然后求另一个数的基数,使得两个数相等。
  其实这个题是有点扯淡的,一开始一直有几个测试点通不过,后来提交了无数次,也没有全部通过,查了一堆资料,发现这道题很多信息没有交代清楚,通过测试得到一些隐藏条件和结论,感觉好坑,把做题过程总结一下吧:
  首先要注意,N1和N2最长为十位,取值从’0-9’和’a-z’选,表示十进制的0~35数,但是基数不受此限制,我最开始以为基数也是0-35选数,那么也就是说2-36进制,这么小的范围进行遍历即可,但实际上,题目中并没有说明基数的取值范围,理论上是2到无穷大都可以。那么就产生两个问题:

  • 上溢,十位的数据,如果选用基数较大的话,即便是用64位的long long也会产生上溢(Overflow),那么怎么处理溢出呢?
  • 基数的上限,我们总不可能从2开始遍历,一个一个的尝试,如果能给出一个范围的话,还可以采用二分法缩小查找时间(不然肯定会超时的)


  基于以上考虑,我们在运算中可以全程使用string,而不是long long作为运算的类型,来解决溢出的问题。但是从N进制到十进制,再到string的转化,未免太麻烦了。经过大量提交,至少有一个结论是——题目中给出测试点的已知基数,是不会溢出的。那么另一个未知数据则会产生溢出,尤其是在查找基数的过程中。那么如何表示这个病态数?有一个小技巧,整型有符号数上溢之后会有一个循环现象,比如说:int a = pow(2,31); 刚好比int所能存储的最大正值2^31 - 1 = 2147483647 大1,显示的结果刚好是int所能存储的最小负值-2^31 = -2147483648 ,也就是说,给出的已知数据是不会溢出的,那么只要是取值为负的,全部是上溢,基数取得过大了。
  对于基数范围,首先,可以可以遍历位置数的每一位,得到单个位的最大数,不管是几进制,基数肯定比这个最大值大,这是基数的取值下限。然后,对于已知数,基数肯定不可能大于已知数,这是基数的取值上限。但,显然上限有点高,遍历的话会超时,所以采用二分法。
  结合以上两点分析,参考了网上许多大神的代码,终于是通过了,只能说这道题看似简单,但是想拿全部 25分,有难度。
  最后,对系统类库的正确使用,也能大大提高编程效率。

3 AC代码


/*
**@Brief: No.1010 of PAT advanced level.
**@Author:Jason.Lee
**@Date: 2018-7-4
*/

#include<iostream>
#include<cctype>
#include<algorithm>
#include<cmath>

using namespace std;
// Enter a string and convert to a number
long long str2num(string str,int radix){
    long long sum = 0;
    int index = 0;
    int per_digit = 0;
    for(auto t = str.rbegin();t!=str.rend();t++){
        per_digit = isdigit(*t)? *t - '0':*t - 'a' + 10;
        sum+=per_digit*pow(radix,index++);
    }
    return sum;
}
// Enter the known and unknown numbers to find the result radix
long long find_radix(string str,long long num){
    //cout<<"str = "<<str<<endl;
    long long result_radix = -1;
    char it = *max_element(str.begin(),str.end());
    long long low = (isdigit(it)?it - '0':it - 'a' + 10) + 1;
    //cout<<"low = "<<low<<endl;
    long long high = max(low,num);
    while(low<=high){
        long long mid = (low+high)/2;
        long long temp = str2num(str,mid);
        /*
        cout<<"mid = "<<mid<<endl;
        cout<<"temp = "<<temp<<endl;
        cout<<"low = " <<low<<endl;
        cout<<"high = "<<high<<endl;
        */
        if(temp<0||temp>num){
            high = mid - 1;
        }else if(temp<num){
            low = mid + 1;
        }else{
            result_radix = mid;
            break;
        }
    }
    return result_radix;

}

int main(){
    string N1;
    string N2;
    int tag;
    long long radix;
    while(cin>>N1>>N2>>tag>>radix){
        long long known_num = (tag==1?str2num(N1,radix):str2num(N2,radix));
        long long result = find_radix((tag==1?N2:N1),known_num);
        if(result!=-1){
            cout<<result<<endl;
        }else{
            cout<<"Impossible"<<endl;
        }
    }
    return 0;
}

4 总结

  不知道是我太菜了,还是这个题太难,这是迄今为止AC过后最难受的一道题,总觉得是题目出了问题,很多问题没有交代清楚,有点坑。 

发布了222 篇原创文章 · 获赞 561 · 访问量 38万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览