# 题目

Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1 = { 11, 12, 13, 14 } is 12, and the median of S2 = { 9, 10, 15, 16, 17 } is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.

Given two increasing sequences of integers, you are asked to find their median.

Input Specification:
Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N ($≤2×10^​5$​​ ) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.

Output Specification:
For each test case you should output the median of the two given sequences in a line.

Sample Input:

4 11 12 13 14
5 9 10 15 16 17

Sample Output:

13

# 解题思路

题目大意： 输入两个递增序列，求合并之后的非递减序列的中位数。
解题思路1： 申请两个数组，合并数据，然后直接做排序，直接得到中位数，当然，这种方法肯定是要超内存的。但我还是用这种方式皮了一下，想看看哪几个测试点数据量比较大……

/*
** @Brief:No.1029 of PAT advanced level.
** @Author:Jason.Lee
** @Date:2018-12-04
*/
#include<vector>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
vector<int> seq;
int main(){
int N1,N2,temp;
scanf("%d",&N1);
for(int i=0;i<N1;i++){
scanf("%d",&temp);
seq.push_back(temp);
}
scanf("%d",&N2);
for(int i=0;i<N2;i++){
scanf("%d",&temp);
seq.push_back(temp);
}
sort(seq.begin(),seq.end(),[](int x,int y){return x<y;});
cout<<seq[ceil((N1+N2)/2.0)-1]<<endl;
return 0;
}


解题思路2： 所以这道题需要用归并的思想去做。先输入一个数组，然后输入第二个数组的时候进行比较，每比较一次计算一次遍历次数，先比较小的数，如果是第一个已经保存在数组中的数小，就往后遍历该数组，如果是输入的数比较小，就继续输入，直到比较出符合数据的median个数即可。

/*
** @Brief:No.1029 of PAT advanced level.
** @Author:Jason.Lee
** @Date:2018-12-04
** @status: Accepted!
*/

#include<vector>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;

int seq[200010];
int main(){
int N1,N2,temp,median,index = 0;
int res = -1;
scanf("%d",&N1);
for(int i=0;i<N1;i++){
scanf("%d",&seq[i]);
}
scanf("%d",&N2);
median = ceil((N1+N2)/2.0);// 或者用median = (N1+N2+1)/2
for(int i=0;i<N2;i++){
scanf("%d",&temp);
while(temp>=seq[index]&&index<N1&&median){
median--;// 此时开始数第一个序列
index++;
}
if(median==0){// median为0表示已经遍历到中位数的位置了
res = seq[--index];// 刚数完第一个序列，那么结果肯定在第一个序列中
break;
}
median--;// 如果上面那个break没有中断程序，说明还没到中位数的位置，此处median减1，表示scanf的temp也算一个数
if(median==0){
res = temp;// 同理，如果median为0表示输入的temp刚好是中位数
break;
}
}
// 还有一种情况，中位数在第一序列中，第二序列输入完了，但是还没有遍历到，那么继续遍历第一序列
if(median){
while(median--){
seq[index++];
}
res = seq[--index];
}
printf("%d\n",res);
return 0;
}


# 总结

不参考任何资料，然后自己把题目快速做出来，并且最后发现自己的思路还和别人的不一样，还是蛮开心的。