pytorch加载多GPU模型和单GPU模型

有时候,我们用pytorch进行多卡GPUs训练时候,保存模型应该用下面语句:

torch.save(model.module.state_dict(), model_out_path)

但是忘记加module了,直接用

torch.save(model.state_dict(), model_out_path)

所以加载模型会遇到模型中参数名字多了module的关键字而报错,所以用下面加载模型的代码

kwargs={'map_location':lambda storage, loc: storage.cuda(gpu_id)}
def load_GPUS(model,model_path,kwargs):
    state_dict = torch.load(model_path,**kwargs)
    # create new OrderedDict that does not contain `module.`
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:] # remove `module.`
        new_state_dict[name] = v
    # load params
    model.load_state_dict(new_state_dict)
    return model

单卡的模型加载代码如下:

kwargs={'map_location':lambda storage, loc: storage.cuda(gpu_id)}
def load_GPU(model,model_path,kwargs):
    state_dict = torch.load(model_path,**kwargs)
    # create new OrderedDict that does not contain `module.`
    model.load_state_dict(state_dict)
    return model
### 回答1: 在PyTorch加载预训练模型时,如果不想使用多GPU,可以通过以下步骤进行操作。 首先,我们需要导入必要的库和模块: ```python import torch import torchvision.models as models ``` 接下来,我们可以选择要加载的预训练模型。这里以ResNet-50为例: ```python model = models.resnet50(pretrained=True) ``` 接下来,我们需要检查当前系统中的GPU数量。可以使用`torch.cuda.device_count()`来获取GPU的数量。 ```python gpu_count = torch.cuda.device_count() ``` 如果`gpu_count`的值大于1,表示有多个GPU可用。为了确保模型只在GPU上运行,我们需要使用`torch.nn.DataParallel`模块。但是,如果不想使用多GPU,则需要取消这个模块的使用。 如果只有一个GPU可用,我们可以简地将模型转移到该GPU上: ```python if gpu_count == 1: model = model.cuda() ``` 如果有多个GPU可用,我们可以使用`torch.nn.DataParallel`模块来加载预训练模型,并将模型转移到主GPU上: ```python if gpu_count > 1: model = torch.nn.DataParallel(model).cuda() ``` 最后,我们可以使用加载的预训练模型进行后续操作。 总之,为了不使用多GPU进行模型加载,我们需要通过检查GPU数量,并相应地转移到GPU或使用`torch.nn.DataParallel`模块转移到主GPU上。这样可以确保模型GPU上运行而不会使用多GPU。 ### 回答2: 在PyTorch中,加载预训练模型时,如果不希望使用多个GPU上的module,可以通过以下步骤实现: 首先,使用torch.load()函数加载预训练模型的权重和参数,例如: ```python model_state_dict = torch.load('pretrained_model.pth') ``` 然后,在加载模型之前,可以通过修改model_state_dict来删除原模型中包含的多GPU相关的module前缀。默认情况下,PyTorch在保存模型时,会自动添加"module."前缀来标识使用多GPU。例如,如果模型原本的键名为"module.conv1.weight",则可以通过以下代码提取模型参数的键名: ```python new_model_state_dict = {} for k, v in model_state_dict.items(): name = k[7:] # 去掉"module."前缀 new_model_state_dict[name] = v ``` 接下来,创建新的模型实例,并将修改后的参数加载到该实例中: ```python model = YourModel() # 创建新的模型实例 model.load_state_dict(new_model_state_dict) # 加载修改后的模型参数 ``` 注意,这里的YourModel()应该是与预训练模型相同的模型类实例化得到的对象。 通过这样的处理,就可以将预训练模型加载GPU上的模型中,而无需考虑多GPU的module问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值