【深度学习】手动实现RNN循环神经网络

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

目录

01 回顾

02 RNN神经网络原理

 03 RNN神经网络实现

04 RNN神经网络实验


RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。

01 回顾

       RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。

       我们回顾一下网络结构的全连接层,又称线性层,计算公式:y=w*x + b

       w和b是参与训练的参数,w的维度决定了隐含层输出的维度

       参考我之前的文章:【深度学习】手动实现全连接神经网络(FCNN)-CSDN博客

02 RNN神经网络原理

       时序相关问题:要处理的任务是有一个序列的,后一步可能受到前一步的影响,NLP问题是天然的时序问题

       RNN主要思想:将整个序列划分成多个时间步,将每一个时间步的信息依次输入模型,同时将模型输出的结果传给下一个时间步

从数学上实现方式:

       我们首先来观察一下样本,假设我们每个样本是一句话,一句话由若干字组成

       如果使用传统池化方法,对相应维度做加和求平均。我们就丧失了语义信息:I am a cat 和 cat am a I似乎就没有了区别 

       RNN的优势这个时候就凸显了出来,RNN就是将样本进行了多个时间步的处理,后一个时间步等于前一个时间步信息做线性变换,参数为W,再加上当前U与xt的乘积,这样我们既存储了当前时间步信息,也继承了前面时间步的信息。

 03 RNN神经网络实现

       我们首先用pytorch来实现RNN网络的,而后通过自己构造的RNN,对我们构造的RNN网络进行验证

# 使用torch创建RNN层,不进行训练,记录初始化的参数w_ih,w_hh
import torch
import torch.nn as nn
import numpy as np

class TorchRNN(nn.Module):
    def __init__(self,input_size,hidden_size):
        super(TorchRNN,self).__init__()
        self.layer = nn.RNN(input_size,hidden_size,bias=False,batch_first=True)

    def forward(self,x):
        return self.layer(x)
        
x = np.array([[1, 2, 3, 4],
              [3, 4, 5, 6],
              [5, 6, 7, 8],
              [7, 8, 9, 10]])  #网络输入

#torch实验
hidden_size = 5
torch_model = TorchRNN(4, hidden_size)

# print(torch_model.state_dict())
w_ih = torch_model.state_dict()["layer.weight_ih_l0"] # w_ih就是U
w_hh = torch_model.state_dict()["layer.weight_hh_l0"] # w_hh就是W

       我们自己再构造一个RNN

class MyRNN:
    def __init__(self,w_ih,w_hh,hidden_size):
        self.w_ih = w_ih
        self.w_hh = w_hh
        self.hidden_size = hidden_size

    def forward(self,x):
        ht = np.zeros((self.hidden_size))
        output = []
        for xt in x:
            ux = np.dot(xt,self.w_ih.T)  # xt维度:1*4,w_ih.T维度:4*5,ux维度:4*5
            wh = np.dot(ht,self.w_hh.T)  # ht维度:1*5,w_hh.T维度:5*5
            ht_next = np.tanh(ux+wh)  # 维度:4*5
            output.append(ht_next)
            ht = ht_next
        return np.array(output),ht

x = np.array([[1, 2, 3, 4],
              [3, 4, 5, 6],
              [5, 6, 7, 8],
              [7, 8, 9, 10]])  #网络输入

       最后预测输出,对比结果:

torch_x = torch.FloatTensor([x])
output, h = torch_model.forward(torch_x)
print(h)
print(output.detach().numpy(), "torch模型预测结果")
print(h.detach().numpy(), "torch模型预测隐含层结果")
print("---------------")
diy_model = MyRNN(w_ih, w_hh, hidden_size)
output, h = diy_model.forward(x)
print(output, "diy模型预测结果")
print(h, "diy模型预测隐含层结果")

==========================
[[[ 0.9770124  -0.98210144 -0.898459    0.43363687 -0.7096077 ]
  [ 0.99852514 -0.9999082  -0.97600037  0.87200433 -0.49491423]
  [ 0.999937   -0.9999985  -0.9864487   0.9611373  -0.592286  ]
  [ 0.99999815 -1.         -0.99189234  0.98961574 -0.72276914]]] torch模型预测结果
[[[ 0.99999815 -1.         -0.99189234  0.98961574 -0.72276914]]] torch模型预测隐含层结果
---------------
[[ 0.97701239 -0.98210147 -0.89845902  0.43363689 -0.70960771]
 [ 0.99852516 -0.9999082  -0.97600034  0.87200431 -0.49491426]
 [ 0.99993697 -0.9999985  -0.98644868  0.96113729 -0.59228603]
 [ 0.99999817 -0.99999997 -0.99189236  0.98961571 -0.72276908]] diy模型预测结果
[ 0.99999817 -0.99999997 -0.99189236  0.98961571 -0.72276908] diy模型预测隐含层结果

       我们可以看到相差不大,第一个矩阵中是所有时间步的结果,最后隐含层的结果就是最后一个时间步的结果

04 RNN神经网络实验

       我们再构造一个任务:预测字母a出现的位置

import torch
import torch.nn as nn
import numpy as np
import random
import json
import matplotlib.pyplot as plt

"""
基于pytorth的网络编写
实现一个网络完成一个简单nlp任务
判断文本中是否有某些特定字符出现
"""

class TorchModel(nn.Module):
    def __init__(self, vector_dim, sentence_length, vocab,hidden_dim,output_dim):
        super(TorchModel, self).__init__()
        self.embedding = nn.Embedding(len(vocab), vector_dim)  #embedding层

        self.rnn = nn.RNN(vector_dim, hidden_dim,batch_first=True)     #线性层    hidden_dim是隐藏层维度,最好与vector_dim相同或者是它的倍数
        self.classify = nn.Linear(hidden_dim, output_dim) # 线性层,将RNN的输出维度转化为最终输出维度
        self.loss = nn.CrossEntropyLoss()  #loss函数采用均方差损失

    # 当输入真实标签,返回loss值,无真实标签,返回预测值
    #当输入真实标签,返回loss值;无真实标签,返回预测值
    def forward(self, x, y=None):

        x = self.embedding(x)                      #(batch_size, sen_len) -> (batch_size, sen_len, vector_dim)
        x,_ = self.rnn(x)           # (batch_size, sen_len, vector_dim) -> (batch_size, sen_len, hidden_dim)
        # 取rnn最后一个时间步的输出
        x = x[:, -1, :]
        y_pred = self.classify(x)                       #(batch_size, vector_dim) -> (batch_size, 1) 3*5 5*1 -> 3*1
             #(batch_size, 1) -> (batch_size, 1)
        if y is not None:
            return self.loss(y_pred, y)   #预测值和真实值计算损失
        else:
            return y_pred                 #输出预测结果

#字符集随便挑了一些字,实际上还可以扩充
#为每个字生成一个标号
#{"a":1, "b":2, "c":3...}
#abc -> [1,2,3]
def build_vocab():
    chars = "abcdefghij"  #字符集
    vocab = {"pad":0}
    for index, char in enumerate(chars):
        vocab[char] = index+1   #每个字对应一个序号
    vocab['unk'] = len(vocab) #26
    return vocab

def build_sample(vocab, sentence_length):
    # 随机选择除'a'外的其他字符,总数为sentence_length-1
    remaining_keys = list(vocab.keys())
    remaining_keys.remove('a')  # 移除'a',避免重复选择
    x = random.sample(remaining_keys, sentence_length - 1)
    x.append('a')  # 确保'a'被包含在样本中
    random.shuffle(x)  # 打乱列表,使'a'的位置随机

    # 计算'a'的位置
    y = x.index('a')

    # 将字符转换为索引
    x = [vocab[word] for word in x]

    return x, y

# 建立数据集
# 建立需要的样本数量。需要多少生成多少
def build_dataset(sample_length,vocab,sentence_length):
    dataset_x = []
    dataset_y = []
    for i in range(sample_length):
        x,y = build_sample(vocab,sentence_length)
        dataset_x.append(x)
        dataset_y.append(y)
        # 如果在处理数据集上出了问题,那就会功亏一篑

    return torch.LongTensor(dataset_x),torch.LongTensor(dataset_y)

# 建立模型
def build_model(vector_dim, sentence_length, vocab,hidden_dim,output_dim):
    model = TorchModel(vector_dim, sentence_length, vocab,hidden_dim,output_dim)
    return model

# 测试代码
def evaluate(model, vocab, sentence_length):
    model.eval()  # 将模型设置为评估模式
    test_sample_num = 200
    x, y = build_dataset(test_sample_num, vocab, sentence_length)
    correct = 0  # 记录正确预测的数量
    with torch.no_grad():  # 不计算梯度
        y_pred = model(x)  # 模型预测
        _, predicted_labels = torch.max(y_pred, 1)  # 获取最大概率的索引,即预测的类别
        correct += (predicted_labels == y).sum().item()  # 计算正确预测的数量
    print(f'本次测试集预测准确率为{correct / test_sample_num}')
    return correct / test_sample_num

def main():
    epoch_num = 20   # 训练轮数
    batch_size = 2    # 每轮训练样本数
    train_sample = 50   # 每轮训练的样本总数
    char_dim = 20     # 每个字的维度
    sentence_length = 5    # 样本文本长度
    learning_rate = 0.01    # 学习率
    hidden_dim = 10
    output_dim = 5

    vocab = build_vocab()

    # 建立模型
    model = build_model(char_dim, sentence_length, vocab,hidden_dim,output_dim)

    # 选择优化器
    optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate)
    log = []
    x,y = build_dataset(train_sample,vocab,sentence_length)

    # 训练过程
    for epoch in range(epoch_num):
        model.train()
        watch_loss = []
        for batch_index in range(train_sample//batch_size):
            x_train = x[batch_index*batch_size:(batch_index+1)*batch_size]
            y_train = y[batch_index*batch_size:(batch_index+1)*batch_size]

            optimizer.zero_grad()
            loss = model(x_train,y_train)
            loss.backward()
            optimizer.step()

            watch_loss.append(loss.item())

        print(f'===========第{epoch+1}轮训练结果,平均loss:{np.mean(watch_loss)}============')
        acc = evaluate(model,vocab,sentence_length)
        log.append([acc,float(np.mean(watch_loss))])
    # 保存模型
    torch.save(model.state_dict(),'nlpmodel.pth')
    # 保存词表
    writer = open("vocab.json", "w", encoding="utf8")
    writer.write(json.dumps(vocab, ensure_ascii=False, indent=2))
    writer.close()

    # 画图:
    plt.plot(range(1,epoch_num+1),[i[0] for i in log],label='acc')
    plt.plot(range(1,epoch_num+1),[i[1] for i in log],label='loss')
    plt.legend()
    plt.show()
    return

def predicr(model_path,vocab_path,input_strings):  # 加载模型
    char_dim = 20
    sentence_length = 5
    hidden_dim = 10
    output_dim = 5
    vocab = json.load(open(vocab_path,'r',encoding='utf-8'))  # 加载字符表
    model = build_model(char_dim, sentence_length, vocab,hidden_dim,output_dim)
    model.load_state_dict(torch.load(model_path))

    x = []
    for i in input_strings:
        x.append([vocab[j] for j in i])  # 将输入文本序列化
    model.eval()  # 测试模式
    with torch.no_grad():
        result = model(torch.LongTensor(x))
        _, predicted_positions = torch.max(result, dim=1)  # 获取每个样本最大概率的位置
        for i, pred_pos in enumerate(predicted_positions):
            print(f'输入:{input_strings[i]},预测位置:{pred_pos.item()}')  # 打印每个输入字符串的预测位置

if __name__ == '__main__':
    main()
    test_strings = ["abcde", "bacdf", "aebdc",]
    predicr("nlpmodel.pth", "vocab.json", test_strings)

        可视化

       仅仅20轮,模型准确率就达到了1

 

以上

互联网是最好的课本,实践是最好的老师,AI是最好的学习助手

行动起来,共勉

  • 24
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值