【深度学习】手动实现RNN循环神经网络

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

目录

01 回顾

02 RNN神经网络原理

 03 RNN神经网络实现

04 RNN神经网络实验


RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。

01 回顾

       RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。

       我们回顾一下网络结构的全连接层,又称线性层,计算公式:y=w*x + b

       w和b是参与训练的参数,w的维度决定了隐含层输出的维度

       参考我之前的文章:【深度学习】手动实现全连接神经网络(FCNN)-CSDN博客

02 RNN神经网络原理

       时序相关问题:要处理的任务是有一个序列的,后一步可能受到前一步的影响,NLP问题是天然的时序问题

       RNN主要思想:将整个序列划分成多个时间步,将每一个时间步的信息依次输入模型,同时将模型输出的结果传给下一个时间步

从数学上实现方式:

       我们首先来观察一下样本,假设我们每个样本是一句话,一句话由若干字组成

       如果使用传统池化方法,对相应维度做加和求平均。我们就丧失了语义信息:I am a cat 和 cat am a I似乎就没有了区别 

       RNN的优势这个时候就凸显了出来,RNN就是将样本进行了多个时间步的处理,后一个时间步等于前一个时间步信息做线性变换,参数为W,再加上当前U与xt的乘积,这样我们既存储了当前时间步信息,也继承了前面时间步的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值