🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!
目录
RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。
01 回顾
RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。
我们回顾一下网络结构的全连接层,又称线性层,计算公式:y=w*x + b
w和b是参与训练的参数,w的维度决定了隐含层输出的维度
参考我之前的文章:【深度学习】手动实现全连接神经网络(FCNN)-CSDN博客
02 RNN神经网络原理
时序相关问题:要处理的任务是有一个序列的,后一步可能受到前一步的影响,NLP问题是天然的时序问题
RNN主要思想:将整个序列划分成多个时间步,将每一个时间步的信息依次输入模型,同时将模型输出的结果传给下一个时间步
从数学上实现方式:
我们首先来观察一下样本,假设我们每个样本是一句话,一句话由若干字组成
如果使用传统池化方法,对相应维度做加和求平均。我们就丧失了语义信息:I am a cat 和 cat am a I似乎就没有了区别
RNN的优势这个时候就凸显了出来,RNN就是将样本进行了多个时间步的处理,后一个时间步等于前一个时间步信息做线性变换,参数为W,再加上当前U与xt的乘积,这样我们既存储了当前时间步信息,也继承了前面时间步的信息。