【机器学习】回归模型评价指标

本文介绍了回归模型中常用的评价指标,如均方误差(MSE),根均方误差(RMSE),平均绝对误差(MAE)和决定系数(R²),并给出了Python代码示例。指出在选择指标时要考虑问题特性和数据特点,如异常值处理时可能优先考虑MAE或MAPE。
摘要由CSDN通过智能技术生成

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

目录

1.均方误差 (MSE - Mean Squared Error)

2.均方误差根(RMSE-Root Mean Squared Error)

3.平均绝对误差(MEA-Mean Absolute Error)

4.决定系数(-Coefficient of Determination)

5.代码演示


#学习总结#
模型训练好之后,对其进行评价是十分必要的。对于回归模型的性能评价,主要是通过衡量模型预测值与实际值之间的差异来实现的。

主要的评价方式有如下几种:

1.均方误差 (MSE - Mean Squared Error)

  • 计算公式为:MSE = \frac{1}{n}\sum_{i=1}^{n} (y_{i}-y\hat{}_{i})^{2}
  •  其中,y_{i}是观测值,y\hat{}_{i}是模型预测值。
  • MSE衡量的是预测值与实际值差异的平方和的均值,越小表示模型越好。

2.均方误差根(RMSE-Root Mean Squared Error)

  • 计算公式为:RMSE=\sqrt{MSE}
  • RMSE是MSE的平方根,对于较大的误差会给予更大的惩罚,单位与原数据保持一致,便于理解

3.平均绝对误差(MEA-Mean Absolute Error)

  • 计算公式为:MEA = \frac{1}{n}\sum_{i=1}^{n}\left | y_{i}-y\hat{}_{i} \right |
  • MAE 衡量的是预测值与实际值差异的绝对值的平均值,对所有的差异给予相等权重。

4.决定系数(R^{2}-Coefficient of Determination)

  • 计算公式为:R^{2}=1-\frac{\sum_{i=1}^{n}(y_{i}-y\hat{}_{i})^{2}}{\sum_{i=1}^{n}(y_{i}-y\bar{}_{i})^{2}}
  • 其中,y\bar{}是观测值的平均值
  • R^{2}表示模型能够解释的数据变异性的比例,R^{2}越接近1,模型的解释能力越强。

决定系数是常用的观测指标,根据公式我们不难得到以下结论

  1. R^{2}=0或接近0时,相当于取平均值的效果
  2. R^{2}<0时,代表模型效果较差,还不如取平均值的效果,理论上R^{2}取值可以无穷小
  3. R^{2}>0,接近1代表模型效果较好

5.代码演示

代码示例:

#导入相应的方法
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
print("均方误差(MSE):", mean_squared_error(y_test, y_hat))
print("根均方误差(RMSE):", np.sqrt(mean_squared_error(y_test, y_hat)))
print("平均绝对值误差(MAE):", mean_absolute_error(y_test, y_hat))
print("训练集R^2:", r2_score(y_train, lr.predict(X_train)))
print("测试集R^2:", r2_score(y_test, y_hat))
# socre求解的就是r^2的值。但是r2_score方法与score方法传递参数的内容是不同的。
print("训练集R^2:", lr.score(X_train, y_train))
print("测试集R^2:", lr.score(X_test, y_test))

输出:

均方误差(MSE): 3.691394845698606
根均方误差(RMSE): 1.921300300759516
平均绝对值误差(MAE): 1.2333759522850203
训练集R^2: 0.9065727532450596
测试集R^2: 0.8649018906637793
训练集R^2: 0.9065727532450596
测试集R^2: 0.8649018906637793

每种指标都有其优缺点,选择哪种指标取决于具体问题和数据的特点。例如,如果数据中的异常值影响较大,可能会选择使用 MAE 或 MAPE,因为相比于 MSE,它们对异常值的敏感度较低。而 R² 和调整 R² 则更多地用于解释模型对数据的拟合程度。

以上

学习在于总结和坚持,共勉

回归算法的优缺点: 优点: 1. 简单易懂:回归算法是一种较为简单的机器学习算法,易于理解和实现。 2. 可解释性强:回归算法能够提供模型预测结果的可解释性,方便分析和理解。 3. 适用范围广:回归算法适用于各种类型的数据,如连续型数据、分类型数据等。 4. 鲁棒性强:回归算法对于数据的噪声和异常值有一定的鲁棒性,能够比较好地处理这些情况。 缺点: 1. 对异常值敏感:回归算法对于异常值的敏感度较高,容易受到异常值的影响,导致预测结果不准确。 2. 过拟合问题:回归算法容易出现过拟合问题,需要进行特征选择和调参等操作来避免这种情况的发生。 3. 局限性较大:回归算法的模型形式较为固定,对于复杂的数据结构和特征之间的关系的建模能力有一定的局限性。 评分模型评价: 评分模型评价是指通过对模型预测结果与真实值之间的比较,对模型的性能进行评价和分析。评分模型评价的指标包括: 1. 均方误差(MSE):用于衡量预测值与真实值之间的平均误差,数值越小表示预测结果越准确。 2. 均方根误差(RMSE):MSE的平方根,用于衡量预测值与真实值之间的平均误差,与MSE具有相同的数值趋势。 3. 平均绝对误差(MAE):用于衡量预测值与真实值之间的平均绝对误差,数值越小表示预测结果越准确。 4. 决定系数(R2):用于衡量模型对数据的拟合程度,数值越接近1表示模型对数据的拟合程度越好。 通过对这些指标的评估,可以综合考虑模型预测结果的准确性、稳定性和拟合程度等方面的表现,为模型的改进和优化提供指导。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值