《Deep learning》论文翻译及解读

这篇由Yann LeCun、Yoshua Bengio和Geoffrey Hinton撰写的论文深入探讨了深度学习的发展、核心原理和未来趋势。文章涵盖了监督学习、卷积神经网络、反向传播、分布式特征表示和递归神经网络,阐述了它们在图像理解和语言处理中的应用。通过这篇综述,读者可以全面了解深度学习的基础和潜在影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文信息

  • 题目:Deep learning
  • 作者:Yann LeCun, Yoshua Bengio, Geoffrey Hinton
  • 刊物:Nature
  • DOI:10.1038/nature14539

论文整体理解

这是一篇综述,作者是深度学习领域的三位“大牛”。这篇综述主要介绍了 的深度学习的由来、现状、原理并对其未来进行了展望。文中对监督学习、卷积 神经网络、反向传播算法、分布式特征表示、递归神经网络这几个与深度学习密 切相关的概念进行了讲解,并介绍了深度学习的应用,旨在让读者对深度学习有 一个总体上的理解。 文章从机器学习入手,讲述了其广泛应用与局限性,进而引出深度学习的概 念。随后介绍了机器学习的常见形式——监督学习,并介绍了广泛使用的随机梯 度下降算法,在此基础上又引出了反向传播算法。在介绍反向传播算法时顺便提 到了神经网络的低潮及复兴,由此引出卷积神经网络并对其结构、原理及在图像 理解方面的应用做了介绍。接着介绍了分布式特征表示及其在语言处理中的应用 和递归神经网络,最后展望了深度学习的未来。文章的结构如下图所示。
在这里插入图片描述
这篇论文是我在学习一门课程时阅读的,这门课的大作业就是阅读两篇英文文献并写出自己的理解。论文的详细解读见链接1,懒得再把所有内容再排版成博客了。英文原文见链接2。

链接1: 论文详细解读.
链接2: 英文原文.

1. 概述类 首先是概述类论文,先后有2013年的“Representation Learning: A Review and New Perspectives”和2015年的”Deep Learning in Neural Networks: An Overview”两篇。 上传了较新的一篇。 3. 分布式计算 分布式计算方面论文涉及到具体解决计算能力的问题。有2012年的两篇论文Building High-level Features Using Large Scale Unsupervised Learning和Large Scale Distributed Deep Networks,其中后篇较好,其中第一次提到GPU对深度学习计算进行提速,其描述的情形大致是如何对多个GPGPU并行计算的深度学习框架进行编程。故上传了此篇 4. 具体算法 而后便是具体的算法方面的典型论文,包括K-means、单层非监督网络、卷积网络CNN、多级架构、Maxout和增强学习,论文列举如下: 2006年Notes on Convolutional Neural Networks 2009年What is the Best Multi-Stage Architecture for Object Recognition 2011年An Analysis of Single-Layer Networks in Unsupervised Feature Learning 2012年Learning Feature Representations with K-means 2012年Sparse Filtering (其中有RBM,auto-encoder等) 2014年Improving deep neural network acoustic models using generalized maxout networks 2014年Adolescent-specific patterns of behavior and neural activity during social reinforcement learning 2015年Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis和Human-level control through deep reinforcement learning
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值