51nod-1019 逆序数

20 篇文章 0 订阅
12 篇文章 0 订阅

 

1019 逆序数 

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

 收藏

 关注

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。给出一个整数序列,求该序列的逆序数。

Input

第1行:N,N为序列的长度(n <= 50000)
第2 - N + 1行:序列中的元素(0 <= A[i] <= 10^9)

Output

输出逆序数

Input示例

4
2
4
3
1

Output示例

4

 

思路:归并/线段树/树状数组

 

一,用归并思想来求解。在归并排序时两段合并时可以求出逆序数

二,用线段树或树状数组求解。首先将a[1->n]的值全部变成1再转移成线段树,那么对于区间 a[1-n],求 a[i]之前 a[1->i-1]对a[i]的逆序数,那么只要求 区间a[1->i-1]的区间和减去 比a[i]小的数之和即可,那么如何处理比a[i]小的数呢,只要将比a[i]小的数变成0就行了,那么只需要 从小到大寻找其的逆序数并修改为0即可。

Code 归并:

//1019-逆序数   归并 
#include<iostream>
using namespace std;

const int MAX_N=50005;
int n,ans;
int a[MAX_N];

void merge_sort(int a[],int l,int r);
int main()
{
	ios::sync_with_stdio(false);
	cin>>n;
	for(int i=0;i<n;++i)
		cin>>a[i];
	merge_sort(a,0,n);
	cout<<ans<<endl;
	return 0;
}

void merge_sort(int a[],int l,int r)
{
	int h=(l+r)/2;
	if(r-l==1)	return;
	merge_sort(a,l,h);
	merge_sort(a,h,r);
	int i=l,j=h,k=0;
	int d[r-l+1];
	while(i<h&&j<r){
		if(a[i]>a[j]){
			ans+=h-i;	d[k++]=a[j++];
		}else	d[k++]=a[i++];
	}
	while(i<h||j<r){
		if(i<h)	d[k++]=a[i++];
		if(j<r)	d[k++]=a[j++];
	}
	for(int i=l,k=0;i<r;++k,++i)
		a[i]=d[k];
}

Code 线段树:

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;

const int MAX_N=50005;
struct node{
	int x;
	int id;
	bool operator<(const node &d)const{
		return x<d.x;
	}
};
int n;
LL ans;
int a[MAX_N];
node b[MAX_N];
LL sum[MAX_N<<2];

void Build(int l,int r,int t);	//创建线段树
void PushUp(int t);	//求和 
void Update(int id,int C,int l,int r,int t);	//更新节点 
LL Query(int L,int R,int l,int r,int t);	//查询 a[L->R]的和 
int main()
{
	ios::sync_with_stdio(false);	
	cin>>n;
	for(int i=1,x;i<=n;++i)
	{
		cin>>x;
		b[i].id=i;	b[i].x=x;
		a[i]=1;
	}
	sort(b+1,b+n+1);
	Build(1,n,1);
	for(int i=1;i<=n;++i)
	{
		Update(b[i].id,-1,1,n,1);
		ans+=Query(1,b[i].id,1,n,1);	//查询 a[L->R]的和 
	}
	cout<<ans<<endl;
	return 0;
}

void PushUp(int t)	//求和 
{
	sum[t]=sum[t<<1]+sum[t<<1|1]; 
}

void Build(int l,int r,int t)	//创建线段树
{
	if(l==r){
		sum[t]=a[l];
		return;
	}
	int h=(l+r)>>1;
	Build(l,h,t<<1);
	Build(h+1,r,t<<1|1);
	PushUp(t);
}

void Update(int id,int C,int l,int r,int t)	//更新节点 
{
	if(l==r){
		sum[t]+=C;
		return;
	}
	int h=(l+r)>>1;
	if(id<=h)	Update(id,C,l,h,t<<1);
	else	Update(id,C,h+1,r,t<<1|1);
	PushUp(t);
}

LL Query(int L,int R,int l,int r,int t)	//查询 a[L->R]的和 
{
	if(L<=l&&R>=r)	return sum[t];
	int h=(l+r)>>1;
	LL ans1=0;
	if(L<=h)	ans1+=Query(L,R,l,h,t<<1);	//左子区间与[L,R]有重叠
	if(h+1<=R)	ans1+=Query(L,R,h+1,r,t<<1|1);	//右子区间与[L,R]有重叠,递归
	return ans1;
}

Code 树状数组:

#include<iostream>
#include<algorithm>
using namespace std;

struct node{
	int id;
	int x;
	bool operator<(const node &p)const{
		return (x==p.x)?(id<p.id):(x<p.x);
	}
};
const int MAX_N=50005;
int n;
node a[MAX_N];
int Tree[MAX_N];

int Lowbit(int x);
void Update(int id,int x);
int Query(int id);
int main()
{
	ios::sync_with_stdio(false);
	while(cin>>n){
		for(int i=0;i<n;++i)
		{
			cin>>a[i].x;
			a[i].id=i+1;
			Tree[i+1]=0;
		}
		sort(a,a+n);
		int ans=0;
		for(int i=0;i<n;++i)
		{
			Update(a[i].id,1);
			ans+=a[i].id-Query(a[i].id);
		}
		cout<<ans<<endl;
	}
	
	return 0;
}

int Lowbit(int x)
{
	return x&(-x);
}

void Update(int id,int x)
{
	while(id<=n){
		Tree[id]+=x;
		id+=Lowbit(id);
	}
}

int Query(int id)
{
	int ans=0;
	while(id>0){
		ans+=Tree[id];
		id-=Lowbit(id); 
	}
	return ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值