n只蚂蚁以每秒1cm的速度在长为Lcm的竿子上爬行。当蚂蚁爬到竿子的端点时就会掉落。由于竿子太细,两只蚂蚁相遇时,它们不能交错通过,只能各自反向爬回去。对于每只蚂蚁,我们知道它距离竿子左端的距离xi,但不知道它当前的朝向。请计算各种情况当中,所有蚂蚁落下竿子所需的最短时间和最长时间。
例如:竿子长10cm,3只蚂蚁位置为2 6 7,最短需要4秒(左、右、右),最长需要8秒(右、右、右)。
Input
第1行:2个整数N和L,N为蚂蚁的数量,L为杆子的长度(1 <= L <= 10^9, 1 <= N <= 50000) 第2 - N + 1行:每行一个整数A[i],表示蚂蚁的位置(0 < A[i] < L)
Output
输出2个数,中间用空格分隔,分别表示最短时间和最长时间。
Input示例
3 10 2 6 7
Output示例
4 8
思路: 首先处理蚂蚁的爬行,对于蚂蚁相对而行,它们各自反向爬回去,其实就可以把它们的身份,那么就可以当成它们没有相互碰撞,则它们之间并不互相影响,因此可以当成一个个的静态点来表示。
求最短时间,即求每个蚂蚁离开杆子的最短时间的最大值即可,而蚂蚁离开杆子的最短时间就是向离自己距离最短的杆子一端爬行;则 Min=max(Min,min(x,s-x));
求最大时间,即求每个蚂蚁离开杆子的最长时间的最大值即可,而蚂蚁离开杆子的最长时间就是向离自己距离最长的杆子一端爬行。则 Max=max(Max,max(x,s-x));
Code:
#include<iostream>
using namespace std;
const int MAX_N=50005;
int n,s;
int Min,Max;
int main()
{
ios::sync_with_stdio(false);
cin>>n>>s;
for(int i=0,x;i<n;++i)
{
cin>>x;
Min=max(Min,min(x,s-x));
Max=max(Max,max(x,s-x));
}
cout<<Min<<" "<<Max<<endl;
return 0;
}