P6786 「SWTR-6」GCDs & LCMs(数学推导)

这篇博客探讨了一个利用数学公式优化算法的问题,具体涉及最大公约数(GCD)和最小公倍数(LCM)的概念。通过推导得出x/d=2和y/d=3的关系,进而将算法效率从O(n^2)降低到O(n)。博主使用了map数据结构来加速查找过程,实现了寻找特定y对应的x值并更新数组的操作,最终求解出最大和。

 

 刚开始做这个题的时候也是不清楚样例

但是数学公式来的

假设 y>x (y 是 bj,x 是 bi)

x+y+gcd(x,y)= lcm(x,y)

另 gcd = d,且知道  lcm=x*y/d

x/d+y/d+1=(x/d) * (y/d)

所以 (x/d-1)*(y/d-1) = 2

所以 可以得到 y/d=3, x/d=2

即 3x=2y

根据上述推导 ,代码就出来了,对于每一个确定的 y ,去寻找数列中是否有对应的那个 x,之后此 x 变为 y,重复上述操作

这样有个问题:

1.对于每个 y 我们都要遍历一遍数组 ,时间复杂度为 O(n^2) ,所以我们可以用 map 来简化时间

以下代码是假设存在 x ,去寻找对应的 y 值,然后将 y 作为 x 的值,重复操作

const int N=3e5+5;
 
    int n,m,t;
    int i,j,k;
    ll a[N];

int main()
{
    //IOS;
    while(~sd(n)){
        map<ll,int> mp;
        for(i=1;i<=n;i++) sll(a[i]),mp[a[i]]++;
        sort(a+1,a+1+n);
        ll ans=0,sum,tmp;
        for(i=1;i<=n;i++){
            sum=0,tmp=a[i];
            while(mp[tmp]){
                sum+=tmp*mp[tmp];
                //mp[tmp]=0;
                if(tmp%2!=0) break;
                tmp=tmp/2*3;
            }
            if(sum>ans) ans=sum;
        }
        pll(ans);
    }
    //PAUSE;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值