【题解】ARC 124

C - LCM of GCDs

考点: map + 暴力枚举

#include<bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define PII pair<int,int>
#define All(x) x.begin(),x.end()
using namespace std;
const int mx=55;
const int mxn=10005;
int n,cnt;
ll a[mx],b[mx],res;
vector<ll> c(1);
map<ll,bool> mp;
map<ll,int> mp3;
void get(ll x) {
	for(ll i=1;i<=sqrt(x);i++) {
		if(x%i==0) {
			mp3[i]++;
			if(!mp[i]) c.push_back(i),mp[i]=1;
			if(x/i!=i) {
				mp3[x/i]++;
				if(!mp[x/i]) c.push_back(x/i),mp[x/i]=1;
			}
		}
	}
}
ll gcd(ll x,ll y) {
	return (y==0)?x:gcd(y,x%y);
}
ll lcm(ll x,ll y) {
	return x/gcd(x,y)*y;
}
bool check(ll x,ll y) {
	ll x2=0,y2=0;
	for(int i=1;i<=n;i++) {
		if((a[i]%x==0&&b[i]%y==0)||(a[i]%y==0&&b[i]%x==0)) {
			continue;
		}
		return 0; 
	}
	return 1;
}
int main() {
	scanf("%d",&n);
	for(int i=1;i<=n;i++) {
		scanf("%lld%lld",&a[i],&b[i]);
		get(a[i]),get(b[i]);
	}
	sort(c.begin(),c.end());
	for(int i=1;i<c.size();i++){
		if(mp3[c[i]]<n) continue;
		for(int j=i;j<c.size();j++) {
		    ll tmp=lcm(c[i],c[j]);
		    if(tmp<=res||mp3[c[j]]<n) continue;
			if(check(c[i],c[j])) {
				res=tmp;
			}
		}
	}
	printf("%lld",res);
}

D - Yet Another Sorting Problem

本该是水题,结果分类讨论裂开了。。。

不难想到连边 i->p[i] ,那么对于只有一种颜色的环,势必要花费一次操作与其他环合成一个环然后继续合并,观察到一次合并后环的个数少一,所以每次合并代价为 2。

但是这里要考虑两种不同颜色环的情况,可以考虑以下公式:

n+m-cnt-2*max(cnt1,cnt2) 。其中 cnt 表示环的数量,包括一种颜色的环。 max(cnt1,cnt2) 表示需要合并的最小次数,而 2 表示每次合并的花费。

当然也等价于:n+m-cnt+max(cnt1,cnt2)-min(cnt1,cnt2) ,其中 cnt 不包括自环和一种颜色的环。

总结:栽在这道题上还是因为把简单的问题想复杂了。拿到问题要深入分析,不能浮于表面。

#include<bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define PII pair<int,int>
#define All(x) x.begin(),x.end()
using namespace std;
const int mx=2e5+5;
int n,m,p[mx],vis[mx],cnt,cnt1,cnt2;
int main() {
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n+m;i++) {
		scanf("%d",&p[i]);
		if(p[i]==i) {cnt++;vis[i]=1;}
	}
	for(int i=1;i<=n+m;i++) {
		if(vis[i]) continue;
		int j=i,f1=0,f2=0;
		for(;!vis[j];j=p[j]) {
			if(j<=n) f1++;
			else f2++;
			vis[j]=1;
		}
		cnt++;
		if(!f2){
			cnt1++;
		}
		else if(!f1){
			cnt2++;
		}
	}
	printf("%d",n+m-cnt+2*max(cnt1,cnt2));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值