C - LCM of GCDs(记忆化DFS)

这篇博客介绍了一个使用DFS(深度优先搜索)算法求解两个整数的最大公约数(GCD)和最小公倍数(LCM)的递归实现。代码中定义了全局变量`dp`用于存储中间结果,避免重复计算。通过遍历数组`a[]`和`b[]`,博主展示了如何在给定数组中寻找最大公约数和最小公倍数的递归策略,最后输出结果。
摘要由CSDN通过智能技术生成

DFS生成一下所有排列

#include <iostream>
#include <cstring>
#include <algorithm>
#include <sstream>
#include <set>
#include <cmath>
#include <queue>
#include <bitset>
#include <vector>
#include <unordered_map>
#define int long long
#define endl '\n'
#define lowbit(x) x &(-x)
#define mh(x) memset(x, -1, sizeof h)
#define debug(x) cerr << #x << "=" << x << endl;
#define brk exit(0);
using namespace std;
const int N = 55;
const int M = 2 * N;
const int mod = 998244353;
const double esp = 1e-6;
const double pi = acos(-1);
typedef pair<int, int> PII;
typedef long long ll;
struct pair_hash
{
    template <class T1, class T2>
    size_t operator () (pair<T1, T2> const &pair) const
    {
        size_t h1 = hash<T1>()(pair.first); 
        size_t h2 = hash<T2>()(pair.second);
        return h1 ^ h2;
    }
};
vector<unordered_map<PII, int,pair_hash>> dp(N);
int n;
int a[N], b[N];
int gcd(int a, int b)
{
	return b > 0 ? gcd(b, a % b) : a;
}
int lcm(int a,int b)
{
	return a / gcd(a, b) * b;
}
int dfs(int x, int gd1, int gd2)
{
	if(dp[x][{gd1,gd2}])
		return dp[x][{gd1, gd2}];
	if(x>n)
		return dp[x][{gd1, gd2}] = lcm(gd1, gd2);
	int res = 0;
	res = max(res,dfs(x + 1, gcd(gd1,a[x]),gcd(gd2,b[x])));
	res = max(res,dfs(x + 1, gcd(gd1,b[x]),gcd(gd2,a[x])));
	return dp[x][{gd1,gd2}]=res;
}
void solve()
{
	cin >> n;
	for (int i = 1; i <= n; ++i)
		cin >> a[i] >> b[i];
	cout << dfs(1, a[1], b[1])<<endl;
}
signed main()
{
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	int T = 1;
	// cin >> T;
	while (T--)
		solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值