幂级数
幂级数是一类最简单的函数项级数,可以看为事多项式函数的延伸。
一、幂级数的收敛区间
1) 阿贝尔定理,
由这个定理可知幂级数的收敛域是原点为中心的区间,若以2R表示区间的长度,R为幂级数的收敛半径,他就是幂级数收敛的那些点的上确界
注意:收敛区间一定是开区间,收敛域事所有收敛点的集合,即收敛区间在加上两边可能收敛的端点。
2)柯西——阿达马定理
缺项幂级数就可以用柯西——阿达马定理来做。
3)若幂级数的收敛半径为R,那么在它的收敛区间(-R,R)内的任意一个内闭得区间 [a,b] 都一致收敛。
4)若幂级数的收敛半径为R,且在x = R(或x=-R)时收敛,那么级数在 [0,R] (或 [-R,0])都是一致收敛
二、幂级数的性质
i)幂级数的和函数事(-R,R)得连续函数
ii)幂函数在收敛域得左(右)端点上收敛,则其和函数也在这一端点左(右)连续
iii)幂级数逐项求积,逐项求和后得到的幂函数和原来的幂函数有相同的收敛域。
它有两个推论
三、幂函数的运算
i)相等
这个定理还可以推出幂函数的和为奇(偶)函数,则不会出现偶(奇)次幂的项
ii)