复变函数论4-解析函数的幂级数表示法2-幂级数2-收敛半径R的求法:柯西-阿达马(Cauchy-Hadamard)公式【若幂级数系数cₙ满足lim_{n⭢∞}(cₙ₊₁/cₙ)=ℒ,则R=1/ℒ】

本文介绍了复变函数中幂级数的收敛半径求解,通过柯西-阿达马公式推导,详细解释了如何根据系数比的极限来确定幂级数的收敛半径,并提供了多个实例进行详细解答。
摘要由CSDN通过智能技术生成

定理 4.13

如果幂级数 ∑ n = 0 ∞ c n ( z − a ) n \sum_{n=0}^{\infty} c_{n}(z-a)^{n} n=0cn(za)n 的系数 c n c_{n} cn满足

lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = l ( 达朗贝尔 ( d ′ A l e m b e r t ) , \lim \limits_{n \rightarrow \infty}\left|\cfrac{c_{n+1}}{c_{n}}\right|=l \quad(达朗贝尔 \left(\mathrm{d}^{\prime}Alembert ) ,\right. nlim cncn+1 =l(达朗贝尔(dAlembert)

lim ⁡ n → ∞ ∣ c n ∣ n = l ( 柯西 ) , \lim \limits_{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=l(柯西) , nlimncn =l(柯西)

lim ⁡ n → ∞ ∣ c n ∣ n = l (柯西 − 阿达马), \lim \limits_{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=l(柯西-阿达马) , nlimncn =l(柯西阿达马),

则幂级数 ∑ n = 0 c n ( z − a ) n \sum_{n=0} c_{n}(z-a)^{n} n=0cn(za)n 的收敛半径 ① {}^{①}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值