定理 4.13
如果幂级数 ∑ n = 0 ∞ c n ( z − a ) n \sum_{n=0}^{\infty} c_{n}(z-a)^{n} ∑n=0∞cn(z−a)n 的系数 c n c_{n} cn满足
lim n → ∞ ∣ c n + 1 c n ∣ = l ( 达朗贝尔 ( d ′ A l e m b e r t ) , \lim \limits_{n \rightarrow \infty}\left|\cfrac{c_{n+1}}{c_{n}}\right|=l \quad(达朗贝尔 \left(\mathrm{d}^{\prime}Alembert ) ,\right. n→∞lim cncn+1 =l(达朗贝尔(d′Alembert),
或 lim n → ∞ ∣ c n ∣ n = l ( 柯西 ) , \lim \limits_{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=l(柯西) , n→∞limn∣cn∣=l(柯西),
或 lim n → ∞ ∣ c n ∣ n = l (柯西 − 阿达马), \lim \limits_{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}=l(柯西-阿达马) , n→∞limn∣cn∣=l(柯西−阿达马),
则幂级数 ∑ n = 0 c n ( z − a ) n \sum_{n=0} c_{n}(z-a)^{n} ∑n=0cn(z−a)n 的收敛半径 ① {}^{①}