「优选算法刷题」:在排序数组中查找元素的第一个和最后个位置

本文介绍如何使用二分查找算法在非递减整数数组中找到目标值的开始和结束位置,通过划分区间和调整边界来保证时间复杂度为O(logn)。
摘要由CSDN通过智能技术生成

一、题目

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

二、思路解析

二分查找,它很简单,但也很容易写出死循环。不过,不必过多恐惧,只要多做练习,他就会是最简单的查找算法!

我们来看这道题,主要分为 2 部分:查找区间的左端点 和 右端点。

1)查找区间左端点

左边界划分的两个区间的特点:

▪ 左边区间 [left, resLeft - 1] 都是⼩于 x 的;
▪ 右边区间(包括左边界) [resLeft, right] 都是⼤于等于 x 的;

因此,关于 mid 的落点,我们可以分为下⾯两种情况:

◦ 当我们的 mid 落在 [left, resLeft - 1] 区间的时候,也就是 arr[mid] <target 。说明 [left, mid] 都是可以舍去的,此时更新 left 到 mid + 1 的位置,继续在 [mid + 1, right] 上寻找左边界;


◦ 当 mid 落在 [resLeft, right] 的区间的时候,也就是 arr[mid] >= target 。说明 [mid + 1, right] (因为 mid 可能是最终结果,不能舍去)是可以舍去的,此时更新 right 到 mid 的位置,继续在 [left, mid] 上寻找左边界;

注意:这⾥找中间元素需要向下取整,即 mid = left + ( right - left ) / 2 ,而不是 mid = left + ( right - left + 1 ) / 2 。

因为后续移动左右指针的时候:
• 左指针: left = mid + 1 ,是会向后移动的,因此区间是会缩⼩的;
• 右指针: right = mid ,可能会原地踏步(⽐如:如果向上取整的话,如果剩下 1,2 两个元
素, left == 1 , right == 2 , mid == 2 。更新区间之后, left,right,mid 的
值没有改变,就会陷⼊死循环)。
因此⼀定要注意,当 right = mid 的时候,要向下取整。

2)查找区间右端点

我们先⽤ resRight 表⽰右边界;

这时可以注意到右边界的特点:

        ▪ 左边区间 (包括右边界) [left, resRight] 都是⼩于等于 x 的;
        ▪ 右边区间 [resRight+ 1, right] 都是⼤于 x 的;

因此,关于 mid 的落点,我们可以分为下⾯两种情况:

◦ 当我们的 mid 落在 [left, resRight] 区间的时候,说明 [left, mid - 1]( mid 不可以舍去,因为有可能是最终结果) 都是可以舍去的,此时更新 left 到 mid的位置;
◦ 当 mid 落在 [resRight+ 1, right] 的区间的时候,说明 [mid, right] 内的元素是可以舍去的,此时更新 right 到 mid - 1 的位置;

• 由此,就可以通过⼆分,来快速寻找右边界;
注意:这⾥找中间元素需要向上取整「 mid = left + ( right - left + 1 ) / 2」。

因为后续移动左右指针的时候:
• 左指针: left = mid ,可能会原地踏步(比如:如果向下取整的话,如果剩下 1,2 两个元
素, left == 1, right == 2,mid == 1 。更新区间之后, left,right,mid ?的值
没有改变,就会陷⼊死循环)。
• 右指针: right = mid - 1 ,是会向前移动的,因此区间是会缩小的;
因此⼀定要注意,当? right = mid ?的时候,要向下取整。

三、完整代码

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int ret[] = new int[2];
        ret[0] = ret[1] = -1;

        // 处理边界情况
        if(nums.length == 0){
            return ret;
            }

        // 1. ⼆分左端点    
        int left = 0;
        int right = nums.length - 1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(nums[mid] < target){
                left = mid + 1; 
            }else{
                right = mid;
            }
        }

        // 判断是否有结果
        if(nums[left] != target){
            return ret;
        }else{
            ret[0] = left;
        }

        // 2. ⼆分右端点
        left = 0;
        right = nums.length - 1;
        while(left < right){
            int mid = left + (right - left + 1) / 2;
            if(nums[mid] <= target){
                left = mid;
            }else{
                right = mid - 1;
            }
        }
        ret[1] = right;
        return ret ;
    }
}

以上就是本篇博客的全部内容啦,如有不足之处,还请各位指出,期待能和各位一起进步!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱敲代码的罗根

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值