倍数副词twice和three times等

本文详细解释了twice和threetimes作为副词在表示尺寸倍数、数量倍增、价格比较和构成后置定语时的用法,以及与as...as和morethan搭配的特殊情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

twice和three times等竟然是副词,用来表示倍数。

一般有三种用法。

首先 twice the size of sth, three times the amount of sth 都是可以的,表示某某尺寸的两倍,表示某某数量的两倍。

其次,和as ...as连用,即 the shirt is twice as expensive (as mine). 和 the cost is three times as much (as last year)

最后,和more than连用(或者是 adj-er 连用),也表示比较。the shirt is three time more expensive than mine. 或者 the car is three times faster than mine. 

在第二种用法中,括号中的as后面的对象是比较的对象,什么时候用看情况,如果前面已经提到了要比较的对象,那么后续的as sth,就可以省略。比如狗要吃狗粮,老的狗要吃两倍。dogs need dog food, the old one consume twice as much。就好了,就不用写as后面的东西了。第二句话也是同理。

还有最后一个用法:the area twice the size of the British. 后面的作定语,一般主系表结构去掉系动词,后面的结构就可以组成后置定语来修饰前面的名词。

 

### 关于最大公约数最小公倍数问题的解决方案 对于给定两个正整数 \(x_0, y_0 (2 \leq x_0 \leq 100000, 2 \leq y_0 \leq 1000000)\),要找到满足特定条件的正整数对 \(P, Q\) 的数量,其中这些条件是指 \(P, Q\) 应该具有 \(x_0\) 作为它们的最大公约数,并且拥有 \(y_0\) 作为其最小公倍数。 #### 数学关系分析 由于已知两数乘积等于这两个数的最大公约数与最小公倍数之乘积[^1],即: \[ P \times Q = GCD(P,Q) \times LCM(P,Q) \] 因此, \[ P \times Q = x_0 \times y_0 \] 这里的关键在于理解当一对数共享相同的GCD时,则这对数可表示为各自除以其GCD后的互质因子相乘的结果。这意味着如果存在这样的 \(p', q'\) 对应原始的 \(P=x_0\times p'\), \(Q=x_0\times q'\),那么 \(p' * q'=y_0/x_0\) 并且 \(gcd(p', q')=1\)。 #### 枚举方法实现 为了找出所有符合条件的组合,可以通过遍历可能的因数组合来解决问题。具体来说,就是枚举所有的 \(d|(\frac{y_0}{x_0})\) (即能被 \((\frac{y_0}{x_0})\) 整除),并检查每一对是否满足 gcd 等于 1 的条件。这样做的效率取决于优化过的素数筛选以及快速判断两个数之间是否存在公共因子的技术。 下面是 Python 实现的一个简单例子: ```python from math import gcd def count_pairs(x0, y0): result = [] ratio = y0 // x0 for i in range(1, int(ratio ** 0.5)+1): if ratio % i == 0: j = ratio // i # Check coprime condition and avoid duplicate pairs. if gcd(i, j) == 1: pair1 = sorted([i*x0, j*x0]) if not any(set(pair1)==set(item) for item in result): result.append(pair1) # Avoid square root case being counted twice. if i != ratio//i and gcd(j, i) == 1: pair2 = sorted([j*x0, i*x0]) if not any(set(pair2)==set(item) for item in result): result.append(pair2) return len(result) print(count_pairs(int(input()), int(input()))) ``` 这段代码首先定义了一个辅助函数 `count_pairs` 接受参数 `x0`, `y0` 表示题目中的输入值。接着通过循环迭代寻找合适的配对 `(i,j)` ,确保两者之间的比例正好是目标比率 `\frac{y_0}{x_0}` 。最后返回符合条件的不同有序对的数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值