[20220724NOI训练赛]T2--简要题解

插头DP
插头DP:最小表示法
注意到每个数字互不相同。
每个数可以表示成 2 x 3 y z 2^x3^yz 2x3yz 的形式。 z z z 不同的数分别是独立的子问题;对于 z z z 相同的数,有限制的是若干 ( x , y ) , ( x + 1 , y ) , ( x , y + 1 ) (x,y),(x+1,y),(x,y+1) (x,y),(x+1,y),(x,y+1) 的三元组,看成格点,就变成了格点涂色问题。
为了方便,将 x , y x,y x,y 分别等价翻转一下,那么每个三元组是 ( x , y ) , ( x − 1 , y ) , ( x , y − 1 ) (x,y),(x-1,y),(x,y-1) (x,y),(x1,y),(x,y1) ,显然可以放在轮廓线上做。
考虑涂色的贡献:令被钦定同色的格子属于一个连通块,没被钦定的单独一个连通块,设这样的连通块有 t o t tot tot 个,被钦定同色的三元组有 k k k 个,那么贡献是 ( − 1 ) k m t o t (-1)^km^{tot} (1)kmtot 。(本质上就是令被钦定同色的格子同色,其他未被钦定的任意,做容斥。)
具体的,轮廓线时,对于一个正在考虑的各子 ( x , y ) (x,y) (x,y) ,要么新格子单独一个连通块,要么将其与三元组其他的两个格子的连通块合并,块的联通性可以用最小表示法 hash 。处理块时注意那些被封闭的块。至于 k k k t o t tot tot ,不需要真的枚举,假设当前贡献是 r e s res res ,若新钦定了一个三元组,令 r e s = − r e s res=-res res=res 即可;若新封闭了一个连通块,令 r e s = r e s ∗ m res=res*m res=resm 即可。特别的,初始 r e s = 1 res=1 res=1
插头DP。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值