一文彻底搞懂深度学习 - 模型评估

深度学习广泛应用于图像识别、语音识别、自然语言处理等多个领域。模型通过大量数据的学习和训练,能够自动提取数据中的特征,并基于这些特征进行预测和分类如何准确评估这些模型的性能,确保它们在实际应用中能够表现出色,就需要依赖于模型评估这一关键环节。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

在模型评估中,我们通常会使用各种评估指标来衡量模型的性能。分类问题常用准确率、精确率、召回率和F1分数等指标;回归问题则使用均方误差、平均绝对误差等指标。此外,ROC曲线和AUC值也能直观展示模型性能。

Evaluation

一、模型评估

模型评估(Evaluation)是什么?模型评估是指对训练完成的模型进行性能分析和测试的过程,以确定模型在新数据上的表现如何。

在模型评估中,我们通常会将数据集划分为训练集、验证集和测试集。

  1. 训练集(Training Set):用于模型学习的数据集,通过不断调整参数来最小化训练误差。

  2. 验证集(Validation Set):在训练过程中用于评估模型性能,以选择最佳参数和避免过拟合的数据集。

  3. 测试集(Test Set):模型训练完成后,用于评估模型泛化能力的独立数据集。

为什么需要模型评估用于在训练阶段选择最佳参数、避免过拟合,并在训练完成后验证模型泛化能力
  1. 训练过程中的评估:在模型训练阶段,我们需要使用验证集来评估模型的性能,以便选择最佳的参数和架构,同时避免模型过拟合训练数据。

  2. 训练完成后的评估:在模型训练完成后,我们使用测试集来评估模型的泛化能力,即模型在未见过的数据上的表现。

二、评估指标

模型评估指标Evaluation Metric)是什么?_模型评估指标是_用于量化模型在处理数据时表现的指标。它们帮助我们理解模型的性能、准确度和泛化能力,并且可以用于比较不同模型之间的优劣

分类任务的评估指标有哪些*分类任务的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)等。

1. 准确率(Accuracy)
  • 定义:准确率是最直观也最常被提及的评估指标之一,它衡量的是模型预测正确的样本数占总样本数的比例。

  • 计算公式:准确率 = (真正例 + 真负例) / (真正例 + 假正例 + 真负例 + 假负例)

2. 精确率(Precision)
  • 定义:精确率是指模型预测为正例中真正是正例的比例,它反映了模型预测为正例的结果的可信度。

  • 计算公式:精确率 = 真正例 / (真正例 + 假正例)

3. 召回率(Recall)
  • 定义:召回率,也称为灵敏度(Sensitivity)或真正例率(True Positive Rate),是指模型在所有实际为正类的样本中,被正确预测为正类的样本的比例。它反映了模型捕获正类样本的能力。

  • 计算公式:召回率 = 真正例 / (真正例 + 假负例)

4. F1分数(F1 Score)
  • 定义:F1分数是精确率和召回率的调和平均数,旨在综合两者的表现,提供一个平衡指标。

  • 计算公式:F1分数 = 2 * (精确率 * 召回率) / (精确率 + 召回率)

ROC曲线和AUC值是什么?ROC曲线是展示模型在不同阈值下真正例率与假正例率关系的曲线,越靠近左上角性能越好。AUC值是ROC曲线下方的面积,量化模型性能,取值0.5到1,越接近1性能越好。

回归任务的评估指标有哪些?回归问题中评估指标包括均方误差(Mean Squared Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)等。
除了MSE和MAE之外,还有其他一些回归问题的评估指标,如均方根误差(Root Mean Squared Error, RMSE)、R²(决定系数)等。

  • 均方误差(MSE):预测值与真实值之间差的平方的平均值。对异常值敏感,数值越小表示预测越准确。

  • 平均绝对误差(MAE):预测值与真实值之间差的绝对值的平均值。对异常值不敏感度,数值越小表示预测越准确。

  • 均方根误差(RMSE):是MSE的平方根,具有与原始数据相同的量纲,因此更容易解释和理解。

  • R²(决定系数):描述了模型所解释的方差占总方差的比例,越接近1表示模型的拟合效果越好。

为了帮助更多人(AI初学者、IT从业者)从零构建AI底层架构,培养Meta Learning能力;提升AI认知,拥抱智能时代。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料。包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程扫描领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程扫描领取哈)
在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程扫描领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程扫描领取哈)
在这里插入图片描述
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程扫描领取哈)
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值