一文彻底搞懂深度学习 - 模型评估(Evaluation)

深度学习广泛应用于图像识别、语音识别、自然语言处理等多个领域。模型通过大量数据的学习和训练,能够自动提取数据中的特征,并基于这些特征进行预测和分类如何准确评估这些模型的性能,确保它们在实际应用中能够表现出色,就需要依赖于模型评估这一关键环节

在模型评估中,我们通常会使用各种评估指标来衡量模型的性能。分类问题常用准确率、精确率、召回率和F1分数等指标;回归问题则使用均方误差、平均绝对误差等指标。此外,ROC曲线和AUC值也能直观展示模型性能。

Evaluation

一、模型评估

模型评估(Evaluation)是什么?模型评估是指对训练完成的模型进行性能分析和测试的过程,以确定模型在新数据上的表现如何。

在模型评估中,我们通常会将数据集划分为训练集、验证集和测试集。

  1. 训练集(Training Set):用于模型学习的数据集,通过不断调整参数来最小化训练误差。

  2. 验证集(Validation Set):在训练过程中用于评估模型性能,以选择最佳参数和避免过拟合的数据集。

  3. 测试集(Test Set):模型训练完成后,用于评估模型泛化能力的独立数据集。

为什么需要模型评估用于在训练阶段选择最佳参数、避免过拟合,并在训练完成后验证模型泛化能力

  1. 训练过程中的评估:在模型训练阶段,我们需要使用验证集来评估模型的性能,以便选择最佳的参数和架构,同时避免模型过拟合训练数据。

  2. 训练完成后的评估:在模型训练完成后,我们使用测试集来评估模型的泛化能力,即模型在未见过的数据上的表现。

二、评估指标

模型评估指标Evaluation Metric)是什么?模型评估指标是用于量化模型在处理数据时表现的指标。它们帮助我们理解模型的性能、准确度和泛化能力,并且可以用于比较不同模型之间的优劣

分类任务的评估指标有哪些?分类任务的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)等。

1. 准确率(Accuracy)

  • 定义:准确率是最直观也最常被提及的评估指标之一,它衡量的是模型预测正确的样本数占总样本数的比例。

  • 计算公式:准确率 = (真正例 + 真负例) / (真正例 + 假正例 + 真负例 + 假负例)

2. 精确率(Precision)

  • 定义:精确率是指模型预测为正例中真正是正例的比例,它反映了模型预测为正例的结果的可信度。

  • 计算公式:精确率 = 真正例 / (真正例 + 假正例)

3. 召回率(Recall)

  • 定义:召回率,也称为灵敏度(Sensitivity)或真正例率(True Positive Rate),是指模型在所有实际为正类的样本中,被正确预测为正类的样本的比例。它反映了模型捕获正类样本的能力。

  • 计算公式:召回率 = 真正例 / (真正例 + 假负例)

4. F1分数(F1 Score)

  • 定义:F1分数是精确率和召回率的调和平均数,旨在综合两者的表现,提供一个平衡指标。

  • 计算公式:F1分数 = 2 * (精确率 * 召回率) / (精确率 + 召回率)

ROC曲线和AUC值是什么?ROC曲线是展示模型在不同阈值下真正例率与假正例率关系的曲线,越靠近左上角性能越好。AUC值是ROC曲线下方的面积,量化模型性能,取值0.5到1,越接近1性能越好。

回归任务的评估指标有哪些?回归问题中评估指标包括均方误差(Mean Squared Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)等。

除了MSE和MAE之外,还有其他一些回归问题的评估指标,如均方根误差(Root Mean Squared Error, RMSE)、R²(决定系数)等。

  • 均方误差(MSE):预测值与真实值之间差的平方的平均值。对异常值敏感,数值越小表示预测越准确。

  • 平均绝对误差(MAE):预测值与真实值之间差的绝对值的平均值。对异常值不敏感度,数值越小表示预测越准确。

  • 均方根误差(RMSE):是MSE的平方根,具有与原始数据相同的量纲,因此更容易解释和理解。

  • R²(决定系数):描述了模型所解释的方差占总方差的比例,越接近1表示模型的拟合效果越好。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值