武汉大学2012年数学分析试题解答

武汉大学2012年数学分析试题解答

1:计算

(1)  解:由\[1-\frac{1}{\sum\limits_{i=0}^{k}{(2i+1)}}=1-\frac{1}{k(k+1)+k}=\frac{k(k+2)}{{{(k+1)}^{2}}}=\frac{k}{k+1}\cdot \frac{k+2}{k+1}\]

从而$(1-\frac{1}{1+3})(1-\frac{1}{1+3+5})\cdots (1-\frac{1}{1+3+\cdots +(2n+1)})=\frac{1}{n+1}\cdot \frac{n+2}{2}$

于是$\underset{n\to +\infty }{\mathop{\lim }}\,(1-\frac{1}{1+3})(1-\frac{1}{1+3+5})\cdots (1-\frac{1}{1+3+\cdots +(2n+1)})=\frac{1}{2}$

(2)  解:原极限$=\underset{x\to 0}{\mathop{\lim }}\,\frac{\int\limits_{0}^{x}{\sin ({{t}^{2}})dt}}{4{{x}^{3}}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ({{x}^{2}})}{12{{x}^{2}}}=\frac{1}{12}$

(3)  解:由于$F(x)=\frac{1}{x}\int\limits_{0}^{x}{\cos {{t}^{2}}}dt=\frac{1}{x}\int\limits_{0}^{x}{\sum\limits_{n=0}^{\infty }{\frac{{{(-1)}^{n}}}{(2n)!}{{t}^{4n}}}}dt=\sum\limits_{n=0}^{\infty }{\frac{{{(-1)}^{n}}}{(2n)!}\cdot \frac{{{x}^{4n}}}{4n+1}}$

从而${{F}^{(8)}}(0)=\frac{1}{4!}\cdot \frac{1}{9}\cdot 8!=\frac{8!}{216}=\frac{560}{3},{{F}^{(10)}}(0)=0$  

(4)  解:\[{{z}_{x}}=yf_{1}^{'}+f_{2}^{'}\]

\[{{z}_{xx}}=y(yf_{11}^{''}+f_{12}^{''})+(yf_{21}^{''}+f_{22}^{''})={{y}^{2}}f_{11}^{''}+2yf_{12}^{''}+f_{22}^{''}\]

\[{{z}_{xy}}=f_{1}^{'}+xyf_{11}^{''}+(x+y)f_{12}^{''}+f_{22}^{''}\]

(5)  解:原式\[=\iint_{D}{\ln ydxdy-2\iint_{D}{\operatorname{lnx}dxdy}}\]

\[=\int\limits_{0}^{1}{\ln ydy\int\limits_{y}^{2}{dx}}-2\int\limits_{0}^{1}{\ln xdy\int\limits_{1}^{x}{dx}}\]

\[=\int\limits_{1}^{2}{(2-y)\ln ydy-2\int\limits_{1}^{2}{(x-1)\ln xdx}}\]

\[=\int\limits_{1}^{2}{(4-3x)\ln xdx}\]

\[=2\ln 2-\frac{7}{4}\]

2:证明:设${{S}_{n}}=\sum\limits_{i=1}^{n}{a_{i}^{n}}$

由于$\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}>0$,则存在${{N}_{1}}>0$,当$n>{{N}_{1}}$时,使得${{a}_{n}}>0$

而${{a}_{n+1}}\ge {{a}_{n}}$,则存在${{N}_{2}}>0$,当$n>{{N}_{2}}$时,使得${{S}_{n}}\ge 0$

且${{N}_{2}}\ge {{N}_{1}}$,于是

当$n>{{N}_{2}}$时,必有$a_{n}^{n}\le \sum\limits_{i=1}^{n}{a_{i}^{n}}\le na_{n}^{n}$

即${{a}_{n}}\le \sqrt[n]{{{S}_{n}}}\le \sqrt[n]{n}{{a}_{n}}$

两边取极限,由迫敛性知:$\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\sum\limits_{k=1}^{n}{a_{k}^{n}}}=a$

3:证明:反证法。若$\underset{x\in (a,b)}{\mathop{\sup }}\,\left| f'(x) \right|=M<\infty $

则  $\underset{x\in (a,b)}{\mathop{\sup }}\,\left| f'(x) \right|=\underset{x\in (a,b)}{\mathop{\sup }}\,\left| f(\frac{a+b}{2})+f'(\xi )(x-\frac{a+b}{2}) \right|$

     $\le \left| f(\frac{a+b}{2}) \right|+M\cdot \frac{b-a}{2}<\infty $

矛盾,即假设不成立,原命题成立!

4:证明:由

$\int\limits_{a}^{b}{f(x)\int\limits_{a}^{b}{\left| g(x)-g(t) \right|}}dtdx=\int\limits_{a}^{b}{f(x)\int\limits_{a}^{x}{\left| g(x)-g(t) \right|}}dtdx+\int\limits_{a}^{b}{f(x)\int\limits_{x}^{b}{\left| g(x)-g(t) \right|}}dtdx$

\[=\int\limits_{a}^{b}{\int\limits_{t}^{b}{f(x)\left| g(x)-g(t) \right|}}dtdx+\int\limits_{a}^{b}{\int\limits_{t}^{b}{f(t)\left| g(x)-g(t) \right|}}dtdx\]

\[=\int\limits_{a}^{b}{\int\limits_{t}^{b}{\left| f(x)-f(t) \right|\left| g(x)-g(t) \right|}}dtdx\ge 0\]

即知:$(b-a)\int\limits_{a}^{b}{f(x)g(x)dx\ge }\int\limits_{a}^{b}{f(x)dx}\int\limits_{a}^{b}{g(x)dx}$

5:解:(1)${{f}_{x}}(0,0)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(x,0)-f(0,0)}{x}=0,{{f}_{x}}(0,0)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(0,y)-f(0,0)}{y}=0$

即存在,且都为0

(2)当${{x}^{2}}+{{y}^{2}}\ne 0$时,\[{{f}_{x}}(x,y)=\frac{2x{{y}^{3}}}{{{({{x}^{2}}+{{y}^{2}})}^{2}}},{{f}_{y}}(x,y)=\frac{{{x}^{2}}({{x}^{2}}-{{y}^{2}})}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}\]

而$\underset{y=kx\to 0}{\mathop{\lim }}\,{{f}_{x}}(x,y)=\frac{2{{k}^{3}}}{{{(1+{{k}^{2}})}^{2}}},\underset{y=kx\to 0}{\mathop{\lim }}\,{{f}_{y}}(x,y)=\frac{1-{{k}^{2}}}{{{(1+{{k}^{2}})}^{2}}}$与$k$有关

从而 ${{f}_{x}}(x,y),{{f}_{y}}(x,y)$在$(0,0)$不连续。

(1)  由 $\underset{y=kx\to 0}{\mathop{\lim }}\,\frac{f(x,y)-f(0,0)-{{f}_{x}}(0,0)x-{{f}_{y}}(0,0)y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}=\frac{k}{{{(1+{{k}^{2}})}^{\frac{3}{2}}}}$

即知$f(x,y)$在$(0,0)$上不可微

6:证明:设三个单参数曲面族分别为

   $F(x,y,z)=xz-uy=0$

   $G(x,y,z)=\sqrt{{{x}^{2}}+{{y}^{2}}}+\sqrt{{{y}^{2}}+{{z}^{2}}}-v=0$

   $H(x,y,z)=\sqrt{{{x}^{2}}+{{y}^{2}}}-\sqrt{{{y}^{2}}+{{z}^{2}}}-w=0$

则在它们的公共点$(x,y,z)$ 处的法向量分别为

  ${{n}_{F}}(x,y,z,u)=(z,-u,x)=(z,-\frac{xz}{y},x)$

  ${{n}_{G}}(x,y,z,v)=(\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}},\frac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+\frac{y}{\sqrt{{{y}^{2}}+{{z}^{2}}}},\frac{z}{\sqrt{{{y}^{2}}+{{z}^{2}}}})$

  ${{n}_{H}}(x,y,z,v)=(\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}},\frac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}-\frac{y}{\sqrt{{{y}^{2}}+{{z}^{2}}}},\frac{-z}{\sqrt{{{y}^{2}}+{{z}^{2}}}})$

易验证$\left\langle {{n}_{F}},{{n}_{G}} \right\rangle =\left\langle {{n}_{G}},{{n}_{H}} \right\rangle =\left\langle {{n}_{H}},{{n}_{F}} \right\rangle =0$,从而结论成立。

7:证明:由

$\frac{\partial (u,v)}{\partial (x,y)}$
$
=\left|\begin{array}{cccc}
{{u_x}} & {{u_y}} \\
{{v_x}} & {{v_y}}
\end{array}\right|
$
$
=\left|\begin{array}{cccc}
{f'(x)} & 0 \\
{f(x) + xf'(x)} & -1
\end{array}\right|
$
$=-f'(x)$

而$f'({{x}_{0}})\ne 0$且在$({{x}_{0}},{{y}_{0}})$附近是局部可逆的,从而

$u=f(x)\Rightarrow x=g(u)$

$v=xf(x)-v=ug(u)-v$

8:解:(1)当$x=0$时,$S(x)=0;$当$x>0$ 时,由

$\underset{y\to \infty }{\mathop{\lim }}\,\frac{u(x,y)}{{}^{1}/{}_{{{y}^{2}}}}=\underset{y\to \infty }{\mathop{\lim }}\,\frac{\ln (1+{{y}^{3}}x)}{y}=\underset{y\to \infty }{\mathop{\lim }}\,\frac{3{{y}^{2}}x}{1+{{y}^{3}}x}=0$

知$S(x)$有定义;当$x<0$时,$1+{{y}^{3}}x>0\Rightarrow y<\frac{-1}{\sqrt[3]{x}}$

知$S(x)$不存在,综上所述,$S(x)$的定义域为$[0,+\infty )$

(2)  $\frac{\ln (1+{{y}^{3}}x)}{{{y}^{3}}}\le \frac{\ln (1+{{y}^{3}}b)}{{{y}^{3}}}(0\le x\le b)$,即知$S(x)$在有界区间$[0,b]$上是一致收敛

(2)   又由\[\int\limits_{n}^{2n}{\frac{\ln (1+{{y}^{3}}{{e}^{{{n}^{2}}}})}{{{y}^{3}}}}dy\ge \int\limits_{n}^{2n}{\frac{{{\operatorname{lne}}^{{{n}^{2}}}}}{{{(2n)}^{3}}}}dy=\frac{1}{4}\] ,即知在$(0,+\infty )$上不是一致收敛的

(3)  由${{u}_{x}}(x,y)=\frac{1}{1+{{y}^{3}}x}\le \frac{1}{{{y}^{3}}a}(0<a\le x<\infty )$

即知$S(x)$在$(0,+\infty )$上可微,又由

\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{S(x)-S(0)}{x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\int\limits_{1}^{+\infty }{\frac{\ln (1+{{y}^{3}}x)}{{{y}^{3}}x}}dy\]

\[=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\int\limits_{x}^{+\infty }{\frac{\ln (1+u)}{u}\cdot \frac{1}{3{{x}^{\frac{1}{3}}}{{u}^{\frac{2}{3}}}}}du=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{1}{3{{x}^{\frac{1}{3}}}}\int\limits_{0}^{+\infty }{\frac{\ln (1+u)}{u}}du=\infty \]

知$S(x)$在$x=0$处不可导

转载于:https://www.cnblogs.com/Colgatetoothpaste/p/3670004.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值