线性代数的基础知识

  1. 如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y) 在区域D内每一点(x,y)处对x的偏导数存在,那么这个偏导数称作函数z对自变量x的偏导数,记作 ∂ z ∂ x \frac {\partial z}{\partial x} xz, ∂ f ∂ x \frac {\partial f}{\partial x} xf , z x z_x zx , f x ( x , y ) f_x(x,y) fx(x,y) , y 同理
  2. 偏导数反映的是函数沿坐标轴方向的变化率
  3. 图像的边缘部分的梯度值较大,梯度的方向是函数f(x,y)变化最快的方向
  4. 平滑区域的灰度值很小,梯度值也很小,近乎可以为0
  5. 梯度是向量的一种,向量又称为矢量,数学上常用一条有方向的线段来表示向量,
  6. 梯度的幅值表示边缘的强度信息, m a g n i t u d e = G r a d x 2 + G r a d y 2 magnitude=\sqrt{Grad_x^2+Grad_y^2} magnitude=Gradx2+Grady2
  7. m a g n i t u d e magnitude magnitude与原来数字图像中每个像素点对应的值相加,那么图像的边缘就会被大大加强,轮廓会更加明显
  8. 梯度方向与x轴的夹角大小 θ = arctan ⁡ ( G r a d y G r a d x ) \theta = \arctan(\frac{Grad_y}{Grad_x}) θ=arctan(GradxGrady)
    向量可以用坐标来表示,向量之间的加减即坐标之间的加减,向量与数之间的乘法即数与坐标之间的乘积
  9. 设向量$\vec r = (x,y,z) 向 量 的 模 可 以 用 坐 标 表 示 为 向量的模可以用坐标表示为 $\vert r| = \sqrt{ x2+y2+z^2} $$, $ (x,y,z) 分 别 为 向 量 分别为向量 \vec r $ 到三个坐标轴的距离,向量$\vec r $的方向就是从原点出发到点(x,y,z)的方向
  10. 如果函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)可微分,那么函数在该点沿任一方向 ℓ \ell 的方向导数都存在,且有 ∂ f ∂ ℓ ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \frac{\partial f}{\partial \ell}\mid_{(x_0,y_0)}=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta f(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ其中 cos ⁡ α , cos ⁡ β \cos\alpha,\cos\beta cosα,cosβ是方向 ℓ \ell 的方向余弦
  11. 在二元函数的情形下,设函数 f ( x , y ) f(x,y) f(x,y)在平面区域D内有一阶连续偏导数,则对于每一点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D 都可以定义出一个向量 g r a d f ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i ⃗ + f y ( x 0 , y 0 ) j ⃗ grad f(x_0,y_0)=\nabla f(x_0,y_0)=f_x(x_0,y_0)\vec i +f_y(x_0,y_0)\vec j gradf(x0,y0)=f(x0,y0)=fx(x0,y0)i +fy(x0,y0)j 该向量成为函数 f ( x , y ) f(x,y) f(x,y) P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的梯度,记作 g r a d f ( x 0 , y 0 ) grad f(x_0,y_0) gradf(x0,y0) ∇ f ( x 0 , y 0 ) \nabla f(x_0,y_0) f(x0,y0)
  12. ∇ = ∂ ∂ x i ⃗ + ∂ ∂ y j ⃗ \nabla = \frac{\partial}{\partial x}\vec i +\frac{\partial }{\partial y}\vec j =xi +yj 称为二维的向两位分算子或Nabla算子
  13. 方向导数与梯度的关系: ∂ f ∂ ℓ ∣ ( x 0 , y 0 ) = ∣ g r a d f ( x 0 , y 0 ) ∣ cos ⁡ θ \frac{\partial f}{\partial \ell}\mid_{(x_0,y_0)}=|grad f(x_0,y_0)|\cos\theta f(x0,y0)=gradf(x0,y0)cosθ θ = ( g r a d f ( x 0 , y 0 ) , e ⃗ ℓ ^ ) \theta =\left(\widehat {grad f(x_0,y_0),\vec e_\ell } \right) θ=(gradf(x0,y0),e )
    a. 如果 θ = 0 \theta =0 θ=0 即方向 e ⃗ ℓ \vec e_\ell e 与梯度 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)方向相同时,函数增加最快,此时函数在这个方向的方向导数能达到最大值,即梯度 g r a d f ( x 0 , y 0 ) grad f(x_0,y_0) gradf(x0,y0)的模
    b. 如果 θ = π \theta=\pi θ=π 即方向 e ⃗ ℓ \vec e_\ell e 与梯度 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)方向相反时,函数减少最快,此时函数在这个方向的方向导数能达到最小值,即梯度 g r a d f ( x 0 , y 0 ) grad f(x_0,y_0) gradf(x0,y0)的模的负数
    c. 如果 θ = π 2 \theta=\frac {\pi}{2} θ=2π 即方向 e ⃗ ℓ \vec e_\ell e 与梯度 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)方向正交时,函数变化率为0,此时函数在这个方向的方向导数等于0
  14. 在空间区域G内任一点M,都有一个确定的数量 f ( M ) f(M) f(M),则称在这个空间区域G内确定了一个数量场,如果与点对应的是向量 F ( M ) F(M) F(M),则称在这个空间区域内的G确定一个向量场,可以用一个向量值函数 F ( M ) F(M) F(M)确定,而 F ( M ) = P ( M ) i ⃗ + Q ( M ) j ⃗ + R ( M ) k ⃗ F(M) = P(M)\vec i + Q(M)\vec j +R(M) \vec k F(M)=P(M)i +Q(M)j +R(M)k 其中 P ( M ) , Q ( M ) , R ( M ) P(M),Q(M),R(M) P(M),Q(M),R(M)是点M的数量函数

--------------------------------------------------------分割线-------------------------------------------
第一次上手latex公式的编辑,感觉也还好,开始还觉得它很难,
有些格式可能有些别扭,请轻喷,谢谢!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值