令牌桶算法

3 篇文章 0 订阅
1 篇文章 0 订阅

在某些时候,我们需要对请求进来的流量进行控制,也就是我们常说的限流或削峰。

1. 为什么要限流

一个系统,面临大数据量,高并发的访问时,将出现无法提供服务,或请求响应超时等情况,严重的,在连锁反应下导致系统崩溃。这时候,对请求进行限流就很有必要了。通过限流,当请求达到一定的并发数或速率,就进行让请求等待、排队、降级、拒绝服务等,平缓进入系统的请求数峰值。

2. 常用的限流算法

常用的限流算法有两种,分别是漏桶算法,令牌桶算法。

  1. 漏桶算法
    漏桶算法图例
    漏桶算法是将请求放入到漏桶中,桶中的请求按照一定的速率出去。突发大流量请求,经过漏桶算法控制后,将以恒定的速率进入网络。

  2. 令牌桶算法
    令牌桶算法图例
    固定容量的令牌桶可自行以恒定的速率产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,桶内的令牌累积,直到把桶填满。后面再产生的令牌就会从桶中溢出抛弃。请求进来时,需要先从令牌桶中获取到令牌,方能被系统处理及响应。否则,被直接拒绝服务。

总结:
漏桶算法直接强制限制了请求的速率,无论多大的并发请求数,都会以恒定的速率出现。当一个系统的请求处理速率大于漏桶算法的限制速率时,面对突发的大流量,将会出现大量请求被拒绝,而系统利用率低的情况,在这个时候,漏桶算法就不合适了。此时,就要用令牌桶算法。令牌桶在容量固定,在请求量平缓且低于令牌生成速率(令牌生成速率及令牌桶容量要根据系统的处理能力设置)时,令牌桶是满的,面对突发的大流量,令牌桶容量大小的请求数能获取到令牌,降低流量峰值的同时,避免大量请求被丢弃。请求流量平缓进入系统,直到与令牌生成速率持平。
两种算法原理是不同的,但都能达到限流的目的,我们可以结合实际场景使用。比如,当调用的第三方系统处理能力有限,且没有相应的限流机制,这个时候,有突发大流量,为了第三方系统的稳定,就必须抛弃掉多余的流量。使用漏桶算法,刚好可以达到这个目的。相反,作为被调用方,在无法预测有多大的流量进入己方系统时,就可以使用令牌桶算法限流,即使在大流量请求到来,也能平缓过渡。

3. 限流实例

Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法来完成限流,我们可以导入相应的包进行使用。

<dependency>
       <groupId>com.google.guava</groupId>
       <artifactId>guava</artifactId>
       <version>20.0</version>
</dependency>
3.1 调用代码:

在这里插入图片描述

3.2 限流工具类RateLimiter:
/**
     * Acquires the given number of permits from this {@code RateLimiter} if it can be obtained
     * without exceeding the specified {@code timeout}, or returns {@code false} immediately (without
     * waiting) if the permits would not have been granted before the timeout expired.
     * 如果没有超过延时时间,能够从令牌桶获取到指定数量的令牌就返回true;
     * 或者在延时结束时还没有获取到令牌,就返回false(没有指定延时时间 timeout,就马上返回false)
     * @param permits the number of permits to acquire
     * @param timeout the maximum time to wait for the permits. Negative values are treated as zero.
     * @param unit the time unit of the timeout argument
     * @return {@code true} if the permits were acquired, {@code false} otherwise
     * @throws IllegalArgumentException if the requested number of permits is negative or zero
     */
    public boolean tryAcquire(int permits, long timeout, TimeUnit unit) {
        long timeoutMicros = max(unit.toMicros(timeout), 0);
        // 入参校验
        checkPermits(permits);
        long microsToWait;
        // 同步块,解决并发获取令牌的情况
        synchronized (mutex()) {
            long nowMicros = stopwatch.readMicros();
            // 马上能获取到令牌或者在延时时间内能获取到令牌 canAcquire(nowMicros, timeoutMicros)
            if (!canAcquire(nowMicros, timeoutMicros)) {
                return false;
            } else {
                // 预定下一张令牌,返回下一张令牌生成需等待的时间
                microsToWait = reserveAndGetWaitLength(permits, nowMicros);
            }
        }
        stopwatch.sleepMicrosUninterruptibly(microsToWait);
        return true;
    }
3.3 令牌桶限流效果

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值